Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riotaund | GIF version |
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
riotaund | ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 5468 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-reu 2313 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | iotanul 4882 | . . 3 ⊢ (¬ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∅) | |
4 | 2, 3 | sylnbi 603 | . 2 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∅) |
5 | 1, 4 | syl5eq 2084 | 1 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 ∃!weu 1900 ∃!wreu 2308 ∅c0 3224 ℩cio 4865 ℩crio 5467 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 df-sn 3381 df-uni 3581 df-iota 4867 df-riota 5468 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |