Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpssres GIF version

Theorem xpssres 4588
 Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres (𝐶A → ((A × B) ↾ 𝐶) = (𝐶 × B))

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 4300 . . 3 ((A × B) ↾ 𝐶) = ((A × B) ∩ (𝐶 × V))
2 inxp 4413 . . 3 ((A × B) ∩ (𝐶 × V)) = ((A𝐶) × (B ∩ V))
3 incom 3123 . . . 4 (A𝐶) = (𝐶A)
4 inv1 3247 . . . 4 (B ∩ V) = B
53, 4xpeq12i 4310 . . 3 ((A𝐶) × (B ∩ V)) = ((𝐶A) × B)
61, 2, 53eqtri 2061 . 2 ((A × B) ↾ 𝐶) = ((𝐶A) × B)
7 df-ss 2925 . . . 4 (𝐶A ↔ (𝐶A) = 𝐶)
87biimpi 113 . . 3 (𝐶A → (𝐶A) = 𝐶)
98xpeq1d 4311 . 2 (𝐶A → ((𝐶A) × B) = (𝐶 × B))
106, 9syl5eq 2081 1 (𝐶A → ((A × B) ↾ 𝐶) = (𝐶 × B))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1242  Vcvv 2551   ∩ cin 2910   ⊆ wss 2911   × cxp 4286   ↾ cres 4290 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-opab 3810  df-xp 4294  df-rel 4295  df-res 4300 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator