ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpssres Structured version   Unicode version

Theorem xpssres 4588
Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres  C 
C_  X.  |`  C  C  X.

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 4300 . . 3  X.  |`  C  X.  i^i  C  X.  _V
2 inxp 4413 . . 3  X.  i^i  C  X.  _V  i^i  C  X.  i^i  _V
3 incom 3123 . . . 4  i^i  C  C  i^i
4 inv1 3247 . . . 4  i^i  _V
53, 4xpeq12i 4310 . . 3  i^i  C  X.  i^i  _V  C  i^i  X.
61, 2, 53eqtri 2061 . 2  X.  |`  C  C  i^i  X.
7 df-ss 2925 . . . 4  C 
C_  C  i^i  C
87biimpi 113 . . 3  C 
C_  C  i^i  C
98xpeq1d 4311 . 2  C 
C_  C  i^i  X.  C  X.
106, 9syl5eq 2081 1  C 
C_  X.  |`  C  C  X.
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1242   _Vcvv 2551    i^i cin 2910    C_ wss 2911    X. cxp 4286    |` cres 4290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-opab 3810  df-xp 4294  df-rel 4295  df-res 4300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator