ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima2 Unicode version

Theorem resima2 4605
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
resima2  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )

Proof of Theorem resima2
StepHypRef Expression
1 df-ima 4319 . 2  |-  ( ( A  |`  C ) " B )  =  ran  ( ( A  |`  C )  |`  B )
2 resres 4585 . . . 4  |-  ( ( A  |`  C )  |`  B )  =  ( A  |`  ( C  i^i  B ) )
32rneqi 4523 . . 3  |-  ran  (
( A  |`  C )  |`  B )  =  ran  ( A  |`  ( C  i^i  B ) )
4 df-ss 2928 . . . 4  |-  ( B 
C_  C  <->  ( B  i^i  C )  =  B )
5 incom 3126 . . . . . . . 8  |-  ( C  i^i  B )  =  ( B  i^i  C
)
65a1i 9 . . . . . . 7  |-  ( ( B  i^i  C )  =  B  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
76reseq2d 4573 . . . . . 6  |-  ( ( B  i^i  C )  =  B  ->  ( A  |`  ( C  i^i  B ) )  =  ( A  |`  ( B  i^i  C ) ) )
87rneqd 4524 . . . . 5  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ran  ( A  |`  ( B  i^i  C
) ) )
9 reseq2 4568 . . . . . . 7  |-  ( ( B  i^i  C )  =  B  ->  ( A  |`  ( B  i^i  C ) )  =  ( A  |`  B )
)
109rneqd 4524 . . . . . 6  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( B  i^i  C ) )  =  ran  ( A  |`  B ) )
11 df-ima 4319 . . . . . 6  |-  ( A
" B )  =  ran  ( A  |`  B )
1210, 11syl6eqr 2090 . . . . 5  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( B  i^i  C ) )  =  ( A " B ) )
138, 12eqtrd 2072 . . . 4  |-  ( ( B  i^i  C )  =  B  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ( A " B ) )
144, 13sylbi 114 . . 3  |-  ( B 
C_  C  ->  ran  ( A  |`  ( C  i^i  B ) )  =  ( A " B ) )
153, 14syl5eq 2084 . 2  |-  ( B 
C_  C  ->  ran  ( ( A  |`  C )  |`  B )  =  ( A " B ) )
161, 15syl5eq 2084 1  |-  ( B 
C_  C  ->  (
( A  |`  C )
" B )  =  ( A " B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    i^i cin 2913    C_ wss 2914   ran crn 4307    |` cres 4308   "cima 4309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3871  ax-pow 3923  ax-pr 3940
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-br 3761  df-opab 3815  df-xp 4312  df-rel 4313  df-cnv 4314  df-dm 4316  df-rn 4317  df-res 4318  df-ima 4319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator