ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima2 Structured version   Unicode version

Theorem resima2 4587
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
resima2 
C_  C  |`  C
"  "

Proof of Theorem resima2
StepHypRef Expression
1 df-ima 4301 . 2  |`  C "  ran  |`  C  |`
2 resres 4567 . . . 4  |`  C  |`  |`  C  i^i
32rneqi 4505 . . 3  ran  |`  C  |`  ran  |`  C  i^i
4 df-ss 2925 . . . 4 
C_  C  i^i  C
5 incom 3123 . . . . . . . 8  C  i^i  i^i  C
65a1i 9 . . . . . . 7  i^i  C  C  i^i  i^i  C
76reseq2d 4555 . . . . . 6  i^i  C  |`  C  i^i  |`  i^i  C
87rneqd 4506 . . . . 5  i^i  C  ran  |`  C  i^i  ran  |`  i^i  C
9 reseq2 4550 . . . . . . 7  i^i  C  |`  i^i  C  |`
109rneqd 4506 . . . . . 6  i^i  C  ran  |`  i^i  C  ran  |`
11 df-ima 4301 . . . . . 6 
" 
ran  |`
1210, 11syl6eqr 2087 . . . . 5  i^i  C  ran  |`  i^i  C  "
138, 12eqtrd 2069 . . . 4  i^i  C  ran  |`  C  i^i  "
144, 13sylbi 114 . . 3 
C_  C  ran  |`  C  i^i  "
153, 14syl5eq 2081 . 2 
C_  C  ran  |`  C  |`  "
161, 15syl5eq 2081 1 
C_  C  |`  C
"  "
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1242    i^i cin 2910    C_ wss 2911   ran crn 4289    |` cres 4290   "cima 4291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-rel 4295  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator