![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rneqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | rneq 4504 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 df-opab 3810 df-cnv 4296 df-dm 4298 df-rn 4299 |
This theorem is referenced by: rnmpt 4525 resima 4586 resima2 4587 ima0 4627 rnuni 4678 imaundi 4679 imaundir 4680 inimass 4683 dminxp 4708 imainrect 4709 xpima1 4710 xpima2m 4711 rnresv 4723 imacnvcnv 4728 rnpropg 4743 imadmres 4756 mptpreima 4757 dmco 4772 resdif 5091 fpr 5288 fprg 5289 fliftfuns 5381 rnoprab 5529 rnmpt2 5553 qliftfuns 6126 xpassen 6240 |
Copyright terms: Public domain | W3C validator |