Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d Unicode version

Theorem reseq2d 4612
 Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1
Assertion
Ref Expression
reseq2d

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2
2 reseq2 4607 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1243   cres 4347 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-opab 3819  df-xp 4351  df-res 4357 This theorem is referenced by:  reseq12d  4613  resima2  4644  relresfld  4847  f1orescnv  5142  funcocnv2  5151  fococnv2  5152  fnressn  5349  oprssov  5642  dftpos2  5876  dif1en  6337  fseq1p1m1  8956
 Copyright terms: Public domain W3C validator