ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elres Unicode version

Theorem elres 4646
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.)
Assertion
Ref Expression
elres  |-  ( A  e.  ( B  |`  C )  <->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elres
StepHypRef Expression
1 relres 4639 . . . . 5  |-  Rel  ( B  |`  C )
2 elrel 4442 . . . . 5  |-  ( ( Rel  ( B  |`  C )  /\  A  e.  ( B  |`  C ) )  ->  E. x E. y  A  =  <. x ,  y >.
)
31, 2mpan 400 . . . 4  |-  ( A  e.  ( B  |`  C )  ->  E. x E. y  A  =  <. x ,  y >.
)
4 eleq1 2100 . . . . . . . . 9  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  ( B  |`  C )  <->  <. x ,  y >.  e.  ( B  |`  C ) ) )
54biimpd 132 . . . . . . . 8  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  ( B  |`  C )  ->  <. x ,  y
>.  e.  ( B  |`  C ) ) )
6 vex 2560 . . . . . . . . . . 11  |-  y  e. 
_V
76opelres 4617 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  <-> 
( <. x ,  y
>.  e.  B  /\  x  e.  C ) )
87biimpi 113 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  ->  ( <. x ,  y >.  e.  B  /\  x  e.  C
) )
98ancomd 254 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  ->  ( x  e.  C  /\  <. x ,  y >.  e.  B
) )
105, 9syl6com 31 . . . . . . 7  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( x  e.  C  /\  <. x ,  y >.  e.  B
) ) )
1110ancld 308 . . . . . 6  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( A  =  <. x ,  y
>.  /\  ( x  e.  C  /\  <. x ,  y >.  e.  B
) ) ) )
12 an12 495 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  e.  C  /\  <.
x ,  y >.  e.  B ) )  <->  ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) )
1311, 12syl6ib 150 . . . . 5  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) ) )
14132eximdv 1762 . . . 4  |-  ( A  e.  ( B  |`  C )  ->  ( E. x E. y  A  =  <. x ,  y
>.  ->  E. x E. y
( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) ) )
153, 14mpd 13 . . 3  |-  ( A  e.  ( B  |`  C )  ->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
16 rexcom4 2577 . . . 4  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x  e.  C  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
17 df-rex 2312 . . . . 5  |-  ( E. x  e.  C  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  E. x ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) )
1817exbii 1496 . . . 4  |-  ( E. y E. x  e.  C  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
19 excom 1554 . . . 4  |-  ( E. y E. x ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )  <->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
2016, 18, 193bitri 195 . . 3  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
2115, 20sylibr 137 . 2  |-  ( A  e.  ( B  |`  C )  ->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
227simplbi2com 1333 . . . . . 6  |-  ( x  e.  C  ->  ( <. x ,  y >.  e.  B  ->  <. x ,  y >.  e.  ( B  |`  C )
) )
234biimprd 147 . . . . . 6  |-  ( A  =  <. x ,  y
>.  ->  ( <. x ,  y >.  e.  ( B  |`  C )  ->  A  e.  ( B  |`  C ) ) )
2422, 23syl9 66 . . . . 5  |-  ( x  e.  C  ->  ( A  =  <. x ,  y >.  ->  ( <.
x ,  y >.  e.  B  ->  A  e.  ( B  |`  C ) ) ) )
2524impd 242 . . . 4  |-  ( x  e.  C  ->  (
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  ->  A  e.  ( B  |`  C ) ) )
2625exlimdv 1700 . . 3  |-  ( x  e.  C  ->  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  ->  A  e.  ( B  |`  C ) ) )
2726rexlimiv 2427 . 2  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  ->  A  e.  ( B  |`  C ) )
2821, 27impbii 117 1  |-  ( A  e.  ( B  |`  C )  <->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   <.cop 3378    |` cres 4347   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351  df-rel 4352  df-res 4357
This theorem is referenced by:  elsnres  4647
  Copyright terms: Public domain W3C validator