Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | |
3eqtri.2 | |
3eqtri.3 |
Ref | Expression |
---|---|
3eqtri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 | |
2 | 3eqtri.2 | . . 3 | |
3 | 3eqtri.3 | . . 3 | |
4 | 2, 3 | eqtri 2060 | . 2 |
5 | 1, 4 | eqtri 2060 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: csbid 2859 un23 3102 in32 3149 dfrab2 3212 difun2 3302 tpidm23 3471 unisn 3596 dfiunv2 3693 uniop 3992 suc0 4148 unisuc 4150 iunsuc 4157 xpun 4401 dfrn2 4523 dfdmf 4528 dfrnf 4575 res0 4616 resres 4624 xpssres 4645 dfima2 4670 imai 4681 ima0 4684 imaundir 4737 xpima1 4767 xpima2m 4768 dmresv 4779 rescnvcnv 4783 dmtpop 4796 rnsnopg 4799 resdmres 4812 dmmpt 4816 dmco 4829 co01 4835 fpr 5345 fmptpr 5355 fvsnun2 5361 mpt20 5574 dmoprab 5585 rnoprab 5587 ov6g 5638 1st0 5771 2nd0 5772 dfmpt2 5844 algrflem 5850 dftpos2 5876 tposoprab 5895 tposmpt2 5896 tfrlem8 5934 df2o3 6014 axi2m1 6949 2p2e4 8037 numsuc 8379 numsucc 8393 xnegmnf 8742 fz0tp 8981 fzo0to2pr 9074 fzo0to3tp 9075 fzo0to42pr 9076 i4 9355 abs0 9656 absi 9657 |
Copyright terms: Public domain | W3C validator |