![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prprc2 | GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3446 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | prprc1 3478 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
3 | 1, 2 | syl5eq 2084 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1243 ∈ wcel 1393 Vcvv 2557 {csn 3375 {cpr 3376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-un 2922 df-nul 3225 df-sn 3381 df-pr 3382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |