![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvpr1 | GIF version |
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
Ref | Expression |
---|---|
fvpr1.1 | ⊢ A ∈ V |
fvpr1.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fvpr1 | ⊢ (A ≠ B → ({〈A, 𝐶〉, 〈B, 𝐷〉}‘A) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3374 | . . . 4 ⊢ {〈A, 𝐶〉, 〈B, 𝐷〉} = ({〈A, 𝐶〉} ∪ {〈B, 𝐷〉}) | |
2 | 1 | fveq1i 5122 | . . 3 ⊢ ({〈A, 𝐶〉, 〈B, 𝐷〉}‘A) = (({〈A, 𝐶〉} ∪ {〈B, 𝐷〉})‘A) |
3 | necom 2283 | . . . 4 ⊢ (A ≠ B ↔ B ≠ A) | |
4 | fvpr1.1 | . . . . 5 ⊢ A ∈ V | |
5 | fvunsng 5300 | . . . . 5 ⊢ ((A ∈ V ∧ B ≠ A) → (({〈A, 𝐶〉} ∪ {〈B, 𝐷〉})‘A) = ({〈A, 𝐶〉}‘A)) | |
6 | 4, 5 | mpan 400 | . . . 4 ⊢ (B ≠ A → (({〈A, 𝐶〉} ∪ {〈B, 𝐷〉})‘A) = ({〈A, 𝐶〉}‘A)) |
7 | 3, 6 | sylbi 114 | . . 3 ⊢ (A ≠ B → (({〈A, 𝐶〉} ∪ {〈B, 𝐷〉})‘A) = ({〈A, 𝐶〉}‘A)) |
8 | 2, 7 | syl5eq 2081 | . 2 ⊢ (A ≠ B → ({〈A, 𝐶〉, 〈B, 𝐷〉}‘A) = ({〈A, 𝐶〉}‘A)) |
9 | fvpr1.2 | . . 3 ⊢ 𝐶 ∈ V | |
10 | 4, 9 | fvsn 5301 | . 2 ⊢ ({〈A, 𝐶〉}‘A) = 𝐶 |
11 | 8, 10 | syl6eq 2085 | 1 ⊢ (A ≠ B → ({〈A, 𝐶〉, 〈B, 𝐷〉}‘A) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ∈ wcel 1390 ≠ wne 2201 Vcvv 2551 ∪ cun 2909 {csn 3367 {cpr 3368 〈cop 3370 ‘cfv 4845 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-v 2553 df-sbc 2759 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-nul 3219 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-res 4300 df-iota 4810 df-fun 4847 df-fv 4853 |
This theorem is referenced by: fvpr2 5309 |
Copyright terms: Public domain | W3C validator |