![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unixpm | GIF version |
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.) |
Ref | Expression |
---|---|
unixpm | ⊢ (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 4447 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | relfld 4846 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) |
4 | ancom 253 | . . . 4 ⊢ ((∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴) ↔ (∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵)) | |
5 | xpm 4745 | . . . 4 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) | |
6 | 4, 5 | bitri 173 | . . 3 ⊢ ((∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) |
7 | dmxpm 4555 | . . . 4 ⊢ (∃𝑏 𝑏 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) | |
8 | rnxpm 4752 | . . . 4 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) | |
9 | uneq12 3092 | . . . 4 ⊢ ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) | |
10 | 7, 8, 9 | syl2an 273 | . . 3 ⊢ ((∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
11 | 6, 10 | sylbir 125 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
12 | 3, 11 | syl5eq 2084 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∃wex 1381 ∈ wcel 1393 ∪ cun 2915 ∪ cuni 3580 × cxp 4343 dom cdm 4345 ran crn 4346 Rel wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 df-dm 4355 df-rn 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |