ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 GIF version

Theorem dfdm2 4852
Description: Alternate definition of domain df-dm 4355 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4520 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 4832 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2060 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 3590 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 3590 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 4850 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2062 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 4356 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2044 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 4604 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 7 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 4605 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 7 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 4527 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2063 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 3095 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 3086 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2065 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1243  cun 2915   cuni 3580  ccnv 4344  dom cdm 4345  ran crn 4346  ccom 4349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator