![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpm | GIF version |
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.) |
Ref | Expression |
---|---|
xpm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpmlem 4744 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑤 𝑤 ∈ (𝐴 × 𝐵)) | |
2 | eleq1 2100 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | cbvexv 1795 | . . 3 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
4 | eleq1 2100 | . . . 4 ⊢ (𝑏 = 𝑦 → (𝑏 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
5 | 4 | cbvexv 1795 | . . 3 ⊢ (∃𝑏 𝑏 ∈ 𝐵 ↔ ∃𝑦 𝑦 ∈ 𝐵) |
6 | 3, 5 | anbi12i 433 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
7 | eleq1 2100 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐴 × 𝐵))) | |
8 | 7 | cbvexv 1795 | . 2 ⊢ (∃𝑤 𝑤 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
9 | 1, 6, 8 | 3bitr3i 199 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ∃wex 1381 ∈ wcel 1393 × cxp 4343 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-opab 3819 df-xp 4351 |
This theorem is referenced by: ssxpbm 4756 xp11m 4759 xpexr2m 4762 unixpm 4853 |
Copyright terms: Public domain | W3C validator |