ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn2 GIF version

Theorem difprsn2 3504
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 3446 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21difeq1i 3058 . 2 ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵})
3 necom 2289 . . 3 (𝐴𝐵𝐵𝐴)
4 difprsn1 3503 . . 3 (𝐵𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
53, 4sylbi 114 . 2 (𝐴𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
62, 5syl5eq 2084 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wne 2204  cdif 2914  {csn 3375  {cpr 3376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-pr 3382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator