Proof of Theorem amgm2
Step | Hyp | Ref
| Expression |
1 | | 2cn 7986 |
. . . . . 6
⊢ 2 ∈
ℂ |
2 | | simpll 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
3 | | simprl 483 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
4 | | remulcl 7009 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
5 | 2, 3, 4 | syl2anc 391 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) |
6 | | mulge0 7610 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |
7 | | resqrtcl 9627 |
. . . . . . . 8
⊢ (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ) |
8 | 5, 6, 7 | syl2anc 391 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ) |
9 | 8 | recnd 7054 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℂ) |
10 | | sqmul 9316 |
. . . . . 6
⊢ ((2
∈ ℂ ∧ (√‘(𝐴 · 𝐵)) ∈ ℂ) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) = ((2↑2)
· ((√‘(𝐴
· 𝐵))↑2))) |
11 | 1, 9, 10 | sylancr 393 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) = ((2↑2)
· ((√‘(𝐴
· 𝐵))↑2))) |
12 | | sq2 9349 |
. . . . . . 7
⊢
(2↑2) = 4 |
13 | 12 | oveq1i 5522 |
. . . . . 6
⊢
((2↑2) · ((√‘(𝐴 · 𝐵))↑2)) = (4 ·
((√‘(𝐴 ·
𝐵))↑2)) |
14 | | resqrtth 9629 |
. . . . . . . 8
⊢ (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵)) |
15 | 5, 6, 14 | syl2anc 391 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵)) |
16 | 15 | oveq2d 5528 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 ·
((√‘(𝐴 ·
𝐵))↑2)) = (4 ·
(𝐴 · 𝐵))) |
17 | 13, 16 | syl5eq 2084 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2↑2) ·
((√‘(𝐴 ·
𝐵))↑2)) = (4 ·
(𝐴 · 𝐵))) |
18 | 11, 17 | eqtrd 2072 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) = (4 ·
(𝐴 · 𝐵))) |
19 | 2, 3 | resubcld 7379 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 − 𝐵) ∈ ℝ) |
20 | 19 | sqge0d 9407 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ ((𝐴 − 𝐵)↑2)) |
21 | 2 | recnd 7054 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ) |
22 | 3 | recnd 7054 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℂ) |
23 | | binom2 9362 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
24 | 21, 22, 23 | syl2anc 391 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
25 | | binom2sub 9364 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
26 | 21, 22, 25 | syl2anc 391 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
27 | 24, 26 | oveq12d 5530 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))) |
28 | 2 | resqcld 9406 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℝ) |
29 | | 2re 7985 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
30 | | remulcl 7009 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ (𝐴
· 𝐵) ∈ ℝ)
→ (2 · (𝐴
· 𝐵)) ∈
ℝ) |
31 | 29, 5, 30 | sylancr 393 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℝ) |
32 | 28, 31 | readdcld 7055 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℝ) |
33 | 32 | recnd 7054 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ) |
34 | 28, 31 | resubcld 7379 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℝ) |
35 | 34 | recnd 7054 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℂ) |
36 | 3 | resqcld 9406 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℝ) |
37 | 36 | recnd 7054 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℂ) |
38 | 33, 35, 37 | pnpcan2d 7360 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵))))) |
39 | 31 | recnd 7054 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℂ) |
40 | 39 | 2timesd 8167 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (2
· (𝐴 · 𝐵))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵)))) |
41 | | 2t2e4 8069 |
. . . . . . . . . . 11
⊢ (2
· 2) = 4 |
42 | 41 | oveq1i 5522 |
. . . . . . . . . 10
⊢ ((2
· 2) · (𝐴
· 𝐵)) = (4 ·
(𝐴 · 𝐵)) |
43 | | 2cnd 7988 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 2 ∈
ℂ) |
44 | 5 | recnd 7054 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℂ) |
45 | 43, 43, 44 | mulassd 7050 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · 2)
· (𝐴 · 𝐵)) = (2 · (2 ·
(𝐴 · 𝐵)))) |
46 | 42, 45 | syl5eqr 2086 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) = (2 · (2 · (𝐴 · 𝐵)))) |
47 | 28 | recnd 7054 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℂ) |
48 | 47, 39, 39 | pnncand 7361 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵)))) |
49 | 40, 46, 48 | 3eqtr4rd 2083 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = (4 · (𝐴 · 𝐵))) |
50 | 27, 38, 49 | 3eqtrd 2076 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵))) |
51 | 2, 3 | readdcld 7055 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 + 𝐵) ∈ ℝ) |
52 | 51 | resqcld 9406 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℝ) |
53 | 52 | recnd 7054 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℂ) |
54 | 19 | resqcld 9406 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 − 𝐵)↑2) ∈ ℝ) |
55 | 54 | recnd 7054 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 − 𝐵)↑2) ∈ ℂ) |
56 | | 4re 7992 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
57 | | remulcl 7009 |
. . . . . . . . . 10
⊢ ((4
∈ ℝ ∧ (𝐴
· 𝐵) ∈ ℝ)
→ (4 · (𝐴
· 𝐵)) ∈
ℝ) |
58 | 56, 5, 57 | sylancr 393 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℝ) |
59 | 58 | recnd 7054 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℂ) |
60 | | subsub23 7216 |
. . . . . . . 8
⊢ ((((𝐴 + 𝐵)↑2) ∈ ℂ ∧ ((𝐴 − 𝐵)↑2) ∈ ℂ ∧ (4 ·
(𝐴 · 𝐵)) ∈ ℂ) →
((((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴 − 𝐵)↑2))) |
61 | 53, 55, 59, 60 | syl3anc 1135 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴 − 𝐵)↑2))) |
62 | 50, 61 | mpbid 135 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴 − 𝐵)↑2)) |
63 | 20, 62 | breqtrrd 3790 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵)))) |
64 | 52, 58 | subge0d 7526 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) ↔ (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2))) |
65 | 63, 64 | mpbid 135 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2)) |
66 | 18, 65 | eqbrtrd 3784 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2)) |
67 | | remulcl 7009 |
. . . . 5
⊢ ((2
∈ ℝ ∧ (√‘(𝐴 · 𝐵)) ∈ ℝ) → (2 ·
(√‘(𝐴 ·
𝐵))) ∈
ℝ) |
68 | 29, 8, 67 | sylancr 393 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 ·
(√‘(𝐴 ·
𝐵))) ∈
ℝ) |
69 | | sqrtge0 9631 |
. . . . . 6
⊢ (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ (√‘(𝐴 · 𝐵))) |
70 | 5, 6, 69 | syl2anc 391 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤
(√‘(𝐴 ·
𝐵))) |
71 | | 0le2 8006 |
. . . . . 6
⊢ 0 ≤
2 |
72 | | mulge0 7610 |
. . . . . 6
⊢ (((2
∈ ℝ ∧ 0 ≤ 2) ∧ ((√‘(𝐴 · 𝐵)) ∈ ℝ ∧ 0 ≤
(√‘(𝐴 ·
𝐵)))) → 0 ≤ (2
· (√‘(𝐴
· 𝐵)))) |
73 | 29, 71, 72 | mpanl12 412 |
. . . . 5
⊢
(((√‘(𝐴
· 𝐵)) ∈ ℝ
∧ 0 ≤ (√‘(𝐴 · 𝐵))) → 0 ≤ (2 ·
(√‘(𝐴 ·
𝐵)))) |
74 | 8, 70, 73 | syl2anc 391 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (2 ·
(√‘(𝐴 ·
𝐵)))) |
75 | | addge0 7446 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) |
76 | 75 | an4s 522 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) |
77 | 68, 51, 74, 76 | le2sqd 9412 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵))) ≤ (𝐴 + 𝐵) ↔ ((2 · (√‘(𝐴 · 𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2))) |
78 | 66, 77 | mpbird 156 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 ·
(√‘(𝐴 ·
𝐵))) ≤ (𝐴 + 𝐵)) |
79 | | 2pos 8007 |
. . . . 5
⊢ 0 <
2 |
80 | 29, 79 | pm3.2i 257 |
. . . 4
⊢ (2 ∈
ℝ ∧ 0 < 2) |
81 | 80 | a1i 9 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 ∈ ℝ
∧ 0 < 2)) |
82 | | lemuldiv2 7848 |
. . 3
⊢
(((√‘(𝐴
· 𝐵)) ∈ ℝ
∧ (𝐴 + 𝐵) ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵) ↔ (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))) |
83 | 8, 51, 81, 82 | syl3anc 1135 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵))) ≤ (𝐴 + 𝐵) ↔ (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))) |
84 | 78, 83 | mpbid 135 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) |