![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oa1suc | GIF version |
Description: Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
oa1suc | ⊢ (𝐴 ∈ On → (𝐴 +𝑜 1𝑜) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6001 | . . . 4 ⊢ 1𝑜 = suc ∅ | |
2 | 1 | oveq2i 5523 | . . 3 ⊢ (𝐴 +𝑜 1𝑜) = (𝐴 +𝑜 suc ∅) |
3 | peano1 4317 | . . . 4 ⊢ ∅ ∈ ω | |
4 | onasuc 6046 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ ω) → (𝐴 +𝑜 suc ∅) = suc (𝐴 +𝑜 ∅)) | |
5 | 3, 4 | mpan2 401 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +𝑜 suc ∅) = suc (𝐴 +𝑜 ∅)) |
6 | 2, 5 | syl5eq 2084 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +𝑜 1𝑜) = suc (𝐴 +𝑜 ∅)) |
7 | oa0 6037 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +𝑜 ∅) = 𝐴) | |
8 | suceq 4139 | . . 3 ⊢ ((𝐴 +𝑜 ∅) = 𝐴 → suc (𝐴 +𝑜 ∅) = suc 𝐴) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝐴 ∈ On → suc (𝐴 +𝑜 ∅) = suc 𝐴) |
10 | 6, 9 | eqtrd 2072 | 1 ⊢ (𝐴 ∈ On → (𝐴 +𝑜 1𝑜) = suc 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 ∅c0 3224 Oncon0 4100 suc csuc 4102 ωcom 4313 (class class class)co 5512 1𝑜c1o 5994 +𝑜 coa 5998 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-1o 6001 df-oadd 6005 |
This theorem is referenced by: o1p1e2 6048 nnaordex 6100 indpi 6440 prarloclemlo 6592 |
Copyright terms: Public domain | W3C validator |