ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab GIF version

Theorem resopab 4652
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 4357 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V))
2 df-xp 4351 . . . . . 6 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
3 vex 2560 . . . . . . . 8 𝑦 ∈ V
43biantru 286 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴𝑦 ∈ V))
54opabbii 3824 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
62, 5eqtr4i 2063 . . . . 5 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}
76ineq2i 3135 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴})
8 incom 3129 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
97, 8eqtri 2060 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
10 inopab 4468 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
119, 10eqtri 2060 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
121, 11eqtri 2060 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wcel 1393  Vcvv 2557  cin 2916  {copab 3817   × cxp 4343  cres 4347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351  df-rel 4352  df-res 4357
This theorem is referenced by:  resopab2  4655  opabresid  4659  mptpreima  4814  isarep2  4986  resoprab  5597  df1st2  5840  df2nd2  5841
  Copyright terms: Public domain W3C validator