Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  inres Structured version   GIF version

Theorem inres 4572
 Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
inres (A ∩ (B𝐶)) = ((AB) ↾ 𝐶)

Proof of Theorem inres
StepHypRef Expression
1 inass 3141 . 2 ((AB) ∩ (𝐶 × V)) = (A ∩ (B ∩ (𝐶 × V)))
2 df-res 4300 . 2 ((AB) ↾ 𝐶) = ((AB) ∩ (𝐶 × V))
3 df-res 4300 . . 3 (B𝐶) = (B ∩ (𝐶 × V))
43ineq2i 3129 . 2 (A ∩ (B𝐶)) = (A ∩ (B ∩ (𝐶 × V)))
51, 2, 43eqtr4ri 2068 1 (A ∩ (B𝐶)) = ((AB) ↾ 𝐶)
 Colors of variables: wff set class Syntax hints:   = wceq 1242  Vcvv 2551   ∩ cin 2910   × cxp 4286   ↾ cres 4290 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-res 4300 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator