ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssexg Structured version   GIF version

Theorem ssexg 3866
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
ssexg ((AB B 𝐶) → A V)

Proof of Theorem ssexg
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 sseq2 2940 . . . 4 (x = B → (AxAB))
21imbi1d 220 . . 3 (x = B → ((AxA V) ↔ (ABA V)))
3 vex 2534 . . . 4 x V
43ssex 3864 . . 3 (AxA V)
52, 4vtoclg 2586 . 2 (B 𝐶 → (ABA V))
65impcom 116 1 ((AB B 𝐶) → A V)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1226   wcel 1370  Vcvv 2531  wss 2890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-sep 3845
This theorem depends on definitions:  df-bi 110  df-tru 1229  df-nf 1326  df-sb 1624  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-v 2533  df-in 2897  df-ss 2904
This theorem is referenced by:  ssexd  3867  difexg  3868  rabexg  3870  elssabg  3872  elpw2g  3880  abssexg  3904  snexgOLD  3905  snexg  3906  sess1  4038  sess2  4039  trsuc  4105  unexb  4123  uniexb  4151  xpexg  4375  riinint  4516  dmexg  4519  rnexg  4520  resexg  4573  resiexg  4576  imaexg  4603  exse2  4622  cnvexg  4778  coexg  4785  fabexg  4998  f1oabexg  5059  relrnfvex  5114  fvexg  5115  sefvex  5117  mptfvex  5177  mptexg  5307  ofres  5644  resfunexgALT  5656  cofunexg  5657  fnexALT  5659  f1dmex  5662  oprabexd  5673  mpt2exxg  5752  tposexg  5791  frecabex  5895  erex  6037
  Copyright terms: Public domain W3C validator