![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffoss | GIF version |
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
f11o.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
ffoss | ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 4906 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | dffn4 5112 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
3 | 2 | anbi1i 431 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
4 | 1, 3 | bitri 173 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
5 | f11o.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
6 | 5 | rnex 4599 | . . . 4 ⊢ ran 𝐹 ∈ V |
7 | foeq3 5104 | . . . . 5 ⊢ (𝑥 = ran 𝐹 → (𝐹:𝐴–onto→𝑥 ↔ 𝐹:𝐴–onto→ran 𝐹)) | |
8 | sseq1 2966 | . . . . 5 ⊢ (𝑥 = ran 𝐹 → (𝑥 ⊆ 𝐵 ↔ ran 𝐹 ⊆ 𝐵)) | |
9 | 7, 8 | anbi12d 442 | . . . 4 ⊢ (𝑥 = ran 𝐹 → ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵))) |
10 | 6, 9 | spcev 2647 | . . 3 ⊢ ((𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
11 | 4, 10 | sylbi 114 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
12 | fof 5106 | . . . 4 ⊢ (𝐹:𝐴–onto→𝑥 → 𝐹:𝐴⟶𝑥) | |
13 | fss 5054 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) | |
14 | 12, 13 | sylan 267 | . . 3 ⊢ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) |
15 | 14 | exlimiv 1489 | . 2 ⊢ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) |
16 | 11, 15 | impbii 117 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 = wceq 1243 ∃wex 1381 ∈ wcel 1393 Vcvv 2557 ⊆ wss 2917 ran crn 4346 Fn wfn 4897 ⟶wf 4898 –onto→wfo 4900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-cnv 4353 df-dm 4355 df-rn 4356 df-f 4906 df-fo 4908 |
This theorem is referenced by: f11o 5159 |
Copyright terms: Public domain | W3C validator |