ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun2 GIF version

Theorem dffun2 4912
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 4904 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 df-id 4030 . . . . . 6 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
32sseq2i 2970 . . . . 5 ((𝐴𝐴) ⊆ I ↔ (𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
4 df-co 4354 . . . . . 6 (𝐴𝐴) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)}
54sseq1i 2969 . . . . 5 ((𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
6 ssopab2b 4013 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
73, 5, 63bitri 195 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
8 vex 2560 . . . . . . . . . . . 12 𝑦 ∈ V
9 vex 2560 . . . . . . . . . . . 12 𝑥 ∈ V
108, 9brcnv 4518 . . . . . . . . . . 11 (𝑦𝐴𝑥𝑥𝐴𝑦)
1110anbi1i 431 . . . . . . . . . 10 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
1211exbii 1496 . . . . . . . . 9 (∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) ↔ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧))
1312imbi1i 227 . . . . . . . 8 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
14 19.23v 1763 . . . . . . . 8 (∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1513, 14bitr4i 176 . . . . . . 7 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1615albii 1359 . . . . . 6 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
17 alcom 1367 . . . . . 6 (∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1816, 17bitri 173 . . . . 5 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1918albii 1359 . . . 4 (∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
20 alcom 1367 . . . 4 (∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
217, 19, 203bitri 195 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2221anbi2i 430 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
231, 22bitri 173 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241  wex 1381  wss 2917   class class class wbr 3764  {copab 3817   I cid 4025  ccnv 4344  ccom 4349  Rel wrel 4350  Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by:  dffun4  4913  dffun6f  4915  sbcfung  4925  funcnveq  4962  fliftfun  5436  fclim  9815
  Copyright terms: Public domain W3C validator