ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun2 Unicode version

Theorem dffun2 4912
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 4904 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
2 df-id 4030 . . . . . 6  |-  _I  =  { <. y ,  z
>.  |  y  =  z }
32sseq2i 2970 . . . . 5  |-  ( ( A  o.  `' A
)  C_  _I  <->  ( A  o.  `' A )  C_  { <. y ,  z >.  |  y  =  z } )
4 df-co 4354 . . . . . 6  |-  ( A  o.  `' A )  =  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) }
54sseq1i 2969 . . . . 5  |-  ( ( A  o.  `' A
)  C_  { <. y ,  z >.  |  y  =  z }  <->  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z } )
6 ssopab2b 4013 . . . . 5  |-  ( {
<. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z }  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
73, 5, 63bitri 195 . . . 4  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
8 vex 2560 . . . . . . . . . . . 12  |-  y  e. 
_V
9 vex 2560 . . . . . . . . . . . 12  |-  x  e. 
_V
108, 9brcnv 4518 . . . . . . . . . . 11  |-  ( y `' A x  <->  x A
y )
1110anbi1i 431 . . . . . . . . . 10  |-  ( ( y `' A x  /\  x A z )  <->  ( x A y  /\  x A z ) )
1211exbii 1496 . . . . . . . . 9  |-  ( E. x ( y `' A x  /\  x A z )  <->  E. x
( x A y  /\  x A z ) )
1312imbi1i 227 . . . . . . . 8  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
14 19.23v 1763 . . . . . . . 8  |-  ( A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
1513, 14bitr4i 176 . . . . . . 7  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1615albii 1359 . . . . . 6  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
17 alcom 1367 . . . . . 6  |-  ( A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
1816, 17bitri 173 . . . . 5  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1918albii 1359 . . . 4  |-  ( A. y A. z ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. y A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
20 alcom 1367 . . . 4  |-  ( A. y A. x A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
217, 19, 203bitri 195 . . 3  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
2221anbi2i 430 . 2  |-  ( ( Rel  A  /\  ( A  o.  `' A
)  C_  _I  )  <->  ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) ) )
231, 22bitri 173 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241   E.wex 1381    C_ wss 2917   class class class wbr 3764   {copab 3817    _I cid 4025   `'ccnv 4344    o. ccom 4349   Rel wrel 4350   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by:  dffun4  4913  dffun6f  4915  sbcfung  4925  funcnveq  4962  fliftfun  5436  fclim  9815
  Copyright terms: Public domain W3C validator