ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2i Unicode version

Theorem sseq2i 2970
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1  |-  A  =  B
Assertion
Ref Expression
sseq2i  |-  ( C 
C_  A  <->  C  C_  B
)

Proof of Theorem sseq2i
StepHypRef Expression
1 sseq1i.1 . 2  |-  A  =  B
2 sseq2 2967 . 2  |-  ( A  =  B  ->  ( C  C_  A  <->  C  C_  B
) )
31, 2ax-mp 7 1  |-  ( C 
C_  A  <->  C  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 98    = wceq 1243    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931
This theorem is referenced by:  sseqtri  2977  syl6sseq  2991  abss  3009  ssrab  3018  ssintrab  3638  iunpwss  3743  iotass  4884  dffun2  4912  ssimaex  5234  bj-ssom  10060
  Copyright terms: Public domain W3C validator