Detailed syntax breakdown of Definition df-isom
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cB |
. . 3
class 𝐵 |
3 | | cR |
. . 3
class 𝑅 |
4 | | cS |
. . 3
class 𝑆 |
5 | | cH |
. . 3
class 𝐻 |
6 | 1, 2, 3, 4, 5 | wiso 4903 |
. 2
wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
7 | 1, 2, 5 | wf1o 4901 |
. . 3
wff 𝐻:𝐴–1-1-onto→𝐵 |
8 | | vx |
. . . . . . . 8
setvar 𝑥 |
9 | 8 | cv 1242 |
. . . . . . 7
class 𝑥 |
10 | | vy |
. . . . . . . 8
setvar 𝑦 |
11 | 10 | cv 1242 |
. . . . . . 7
class 𝑦 |
12 | 9, 11, 3 | wbr 3764 |
. . . . . 6
wff 𝑥𝑅𝑦 |
13 | 9, 5 | cfv 4902 |
. . . . . . 7
class (𝐻‘𝑥) |
14 | 11, 5 | cfv 4902 |
. . . . . . 7
class (𝐻‘𝑦) |
15 | 13, 14, 4 | wbr 3764 |
. . . . . 6
wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
16 | 12, 15 | wb 98 |
. . . . 5
wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
17 | 16, 10, 1 | wral 2306 |
. . . 4
wff
∀𝑦 ∈
𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
18 | 17, 8, 1 | wral 2306 |
. . 3
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
19 | 7, 18 | wa 97 |
. 2
wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 6, 19 | wb 98 |
1
wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |