ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6f GIF version

Theorem dffun6f 4915
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dffun6f.1 𝑥𝐴
dffun6f.2 𝑦𝐴
Assertion
Ref Expression
dffun6f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dffun6f
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 4912 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢)))
2 nfcv 2178 . . . . . . 7 𝑦𝑤
3 dffun6f.2 . . . . . . 7 𝑦𝐴
4 nfcv 2178 . . . . . . 7 𝑦𝑣
52, 3, 4nfbr 3808 . . . . . 6 𝑦 𝑤𝐴𝑣
6 nfv 1421 . . . . . 6 𝑣 𝑤𝐴𝑦
7 breq2 3768 . . . . . 6 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvmo 1940 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦)
98albii 1359 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦)
10 breq2 3768 . . . . . 6 (𝑣 = 𝑢 → (𝑤𝐴𝑣𝑤𝐴𝑢))
1110mo4 1961 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
1211albii 1359 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
13 nfcv 2178 . . . . . . 7 𝑥𝑤
14 dffun6f.1 . . . . . . 7 𝑥𝐴
15 nfcv 2178 . . . . . . 7 𝑥𝑦
1613, 14, 15nfbr 3808 . . . . . 6 𝑥 𝑤𝐴𝑦
1716nfmo 1920 . . . . 5 𝑥∃*𝑦 𝑤𝐴𝑦
18 nfv 1421 . . . . 5 𝑤∃*𝑦 𝑥𝐴𝑦
19 breq1 3767 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
2019mobidv 1936 . . . . 5 (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦))
2117, 18, 20cbval 1637 . . . 4 (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
229, 12, 213bitr3ri 200 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
2322anbi2i 430 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢)))
241, 23bitr4i 176 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241  ∃*wmo 1901  wnfc 2165   class class class wbr 3764  Rel wrel 4350  Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by:  dffun6  4916  dffun4f  4918  funopab  4935
  Copyright terms: Public domain W3C validator