ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmo Structured version   GIF version

Theorem nfmo 1902
Description: Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 xφ
Assertion
Ref Expression
nfmo x∃*yφ

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1335 . . 3 y
2 nfeu.1 . . . 4 xφ
32a1i 9 . . 3 ( ⊤ → Ⅎxφ)
41, 3nfmod 1899 . 2 ( ⊤ → Ⅎx∃*yφ)
54trud 1237 1 x∃*yφ
Colors of variables: wff set class
Syntax hints:  wtru 1229  wnf 1329  ∃*wmo 1883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-eu 1885  df-mo 1886
This theorem is referenced by:  euexex  1967  nfdisjv  3731  reusv1  4140  mosubopt  4332  dffun6f  4841
  Copyright terms: Public domain W3C validator