Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmo Structured version   GIF version

Theorem nfmo 1917
 Description: Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 xφ
Assertion
Ref Expression
nfmo x∃*yφ

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1352 . . 3 y
2 nfeu.1 . . . 4 xφ
32a1i 9 . . 3 ( ⊤ → Ⅎxφ)
41, 3nfmod 1914 . 2 ( ⊤ → Ⅎx∃*yφ)
54trud 1251 1 x∃*yφ
 Colors of variables: wff set class Syntax hints:   ⊤ wtru 1243  Ⅎwnf 1346  ∃*wmo 1898 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901 This theorem is referenced by:  euexex  1982  nfdisjv  3748  reusv1  4156  mosubopt  4348  dffun6f  4858
 Copyright terms: Public domain W3C validator