ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6 GIF version

Theorem dffun6 4859
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 x∃*y x𝐹y))
Distinct variable group:   x,y,𝐹

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2175 . 2 x𝐹
2 nfcv 2175 . 2 y𝐹
31, 2dffun6f 4858 1 (Fun 𝐹 ↔ (Rel 𝐹 x∃*y x𝐹y))
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98  wal 1240  ∃*wmo 1898   class class class wbr 3755  Rel wrel 4293  Fun wfun 4839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-id 4021  df-cnv 4296  df-co 4297  df-fun 4847
This theorem is referenced by:  funmo  4860  dffun7  4871  funcnvsn  4888  funcnv2  4902  svrelfun  4907  fnres  4958  nfunsn  5150
  Copyright terms: Public domain W3C validator