Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  svrelfun GIF version

Theorem svrelfun 4964
 Description: A single-valued relation is a function. (See fun2cnv 4963 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
svrelfun (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))

Proof of Theorem svrelfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 4916 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 fun2cnv 4963 . . 3 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
32anbi2i 430 . 2 ((Rel 𝐴 ∧ Fun 𝐴) ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
41, 3bitr4i 176 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ↔ wb 98  ∀wal 1241  ∃*wmo 1901   class class class wbr 3764  ◡ccnv 4344  Rel wrel 4350  Fun wfun 4896 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-fun 4904 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator