![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi2i | GIF version |
Description: Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi2i | ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.32i 427 | 1 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: anbi12i 433 mpan10 443 an4 520 an42 521 anandir 525 dcim 784 19.27h 1452 19.27 1453 19.41 1576 sbcof2 1691 sbidm 1731 sb6 1766 3exdistr 1792 4exdistr 1793 2sb5 1859 2sb5rf 1865 sbel2x 1874 eu2 1944 euan 1956 sbmo 1959 mo4f 1960 eu4 1962 moanim 1974 2eu4 1993 clelab 2162 nonconne 2217 r2exf 2342 ceqsex3v 2596 ceqsex4v 2597 ceqsex8v 2599 reu2 2729 reu6 2730 reu4 2735 reu7 2736 2rmorex 2745 rmo3 2849 dfpss2 3029 raldifb 3083 inass 3147 ssddif 3171 difin 3174 invdif 3179 indif 3180 indi 3184 difundi 3189 difindiss 3191 inssdif0im 3291 unipr 3594 uniun 3599 uniin 3600 iunin2 3720 iindif2m 3724 iinin2m 3725 unidif0 3920 mss 3962 eqvinop 3980 opcom 3987 opeqsn 3989 uniuni 4183 zfinf2 4312 elnn 4328 fconstmpt 4387 opeliunxp 4395 xpundi 4396 elvvv 4403 xpiindim 4473 elcnv2 4513 cnvuni 4521 dmuni 4545 opelres 4617 elima3 4675 imai 4681 imainss 4739 ssrnres 4763 cnvresima 4810 mptpreima 4814 coundir 4823 rnco 4827 coass 4839 relrelss 4844 dffun2 4912 dffun4 4913 dffun6f 4915 dffun4f 4918 dffun7 4928 dffun8 4929 dffun9 4930 svrelfun 4964 fncnv 4965 funcnvuni 4968 dfmpt3 5021 fintm 5075 fin 5076 dff12 5091 fores 5115 dff1o4 5134 eqfnfv3 5267 unpreima 5292 ffnfvf 5324 dff13f 5409 ffnov 5605 eqfnov 5607 foov 5647 opabex3d 5748 opabex3 5749 mpt2xopovel 5856 tpostpos 5879 dfsmo2 5902 erinxp 6180 xpassen 6304 distrnqg 6485 subhalfnqq 6512 enq0enq 6529 enq0sym 6530 enq0tr 6532 addnq0mo 6545 mulnq0mo 6546 distrnq0 6557 prarloc 6601 nqprrnd 6641 ltexprlemopl 6699 ltexprlemlol 6700 ltexprlemopu 6701 ltexprlemupu 6702 ltexprlemdisj 6704 ltexprlemloc 6705 recexprlemdisj 6728 caucvgprprlemell 6783 caucvgprprlemelu 6784 addsrmo 6828 mulsrmo 6829 opelreal 6904 axcaucvglemres 6973 elnnz 8255 elznn0nn 8259 zltlen 8319 peano2uz2 8345 peano5uzti 8346 qltlen 8575 elfzuzb 8884 4fvwrd4 8997 fzind2 9095 cvg1nlemres 9584 |
Copyright terms: Public domain | W3C validator |