ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipr GIF version

Theorem unipr 3594
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.)
Hypotheses
Ref Expression
unipr.1 𝐴 ∈ V
unipr.2 𝐵 ∈ V
Assertion
Ref Expression
unipr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem unipr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1519 . . . 4 (∃𝑦((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)) ↔ (∃𝑦(𝑥𝑦𝑦 = 𝐴) ∨ ∃𝑦(𝑥𝑦𝑦 = 𝐵)))
2 vex 2560 . . . . . . . 8 𝑦 ∈ V
32elpr 3396 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
43anbi2i 430 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
5 andi 731 . . . . . 6 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
64, 5bitri 173 . . . . 5 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
76exbii 1496 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
8 unipr.1 . . . . . . 7 𝐴 ∈ V
98clel3 2679 . . . . . 6 (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
10 exancom 1499 . . . . . 6 (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐴))
119, 10bitri 173 . . . . 5 (𝑥𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐴))
12 unipr.2 . . . . . . 7 𝐵 ∈ V
1312clel3 2679 . . . . . 6 (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
14 exancom 1499 . . . . . 6 (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐵))
1513, 14bitri 173 . . . . 5 (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐵))
1611, 15orbi12i 681 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (∃𝑦(𝑥𝑦𝑦 = 𝐴) ∨ ∃𝑦(𝑥𝑦𝑦 = 𝐵)))
171, 7, 163bitr4ri 202 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}))
1817abbii 2153 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
19 df-un 2922 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
20 df-uni 3581 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
2118, 19, 203eqtr4ri 2071 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 97  wo 629   = wceq 1243  wex 1381  wcel 1393  {cab 2026  Vcvv 2557  cun 2915  {cpr 3376   cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-uni 3581
This theorem is referenced by:  uniprg  3595  unisn  3596  uniop  3992  unex  4176  bj-unex  10039
  Copyright terms: Public domain W3C validator