ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom Structured version   GIF version

Theorem exancom 1496
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (x(φ ψ) ↔ x(ψ φ))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 253 . 2 ((φ ψ) ↔ (ψ φ))
21exbii 1493 1 (x(φ ψ) ↔ x(ψ φ))
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  19.29r  1509  19.42h  1574  19.42  1575  risset  2346  morex  2719  dfuni2  3573  eluni2  3575  unipr  3585  dfiun2g  3680  uniuni  4149  cnvco  4463  imadif  4922  funimaexglem  4925  bdcuni  9331  bj-axun2  9370
  Copyright terms: Public domain W3C validator