Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1499
 Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 253 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1496 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ↔ wb 98  ∃wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  19.29r  1512  19.42h  1577  19.42  1578  risset  2352  morex  2725  dfuni2  3582  eluni2  3584  unipr  3594  dfiun2g  3689  uniuni  4183  cnvco  4520  imadif  4979  funimaexglem  4982  bdcuni  9996  bj-axun2  10035
 Copyright terms: Public domain W3C validator