Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov GIF version

Theorem eqfnov 5607
 Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
eqfnov ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem eqfnov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv2 5266 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧))))
2 fveq2 5178 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 fveq2 5178 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
42, 3eqeq12d 2054 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩)))
5 df-ov 5515 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
6 df-ov 5515 . . . . . 6 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
75, 6eqeq12i 2053 . . . . 5 ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩))
84, 7syl6bbr 187 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
98ralxp 4479 . . 3 (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
109anbi2i 430 . 2 (((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧)) ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
111, 10syl6bb 185 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243  ∀wral 2306  ⟨cop 3378   × cxp 4343   Fn wfn 4897  ‘cfv 4902  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910  df-ov 5515 This theorem is referenced by:  eqfnov2  5608
 Copyright terms: Public domain W3C validator