ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff13f GIF version

Theorem dff13f 5409
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
dff13f.1 𝑥𝐹
dff13f.2 𝑦𝐹
Assertion
Ref Expression
dff13f (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dff13f
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5407 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣)))
2 dff13f.2 . . . . . . . . 9 𝑦𝐹
3 nfcv 2178 . . . . . . . . 9 𝑦𝑤
42, 3nffv 5185 . . . . . . . 8 𝑦(𝐹𝑤)
5 nfcv 2178 . . . . . . . . 9 𝑦𝑣
62, 5nffv 5185 . . . . . . . 8 𝑦(𝐹𝑣)
74, 6nfeq 2185 . . . . . . 7 𝑦(𝐹𝑤) = (𝐹𝑣)
8 nfv 1421 . . . . . . 7 𝑦 𝑤 = 𝑣
97, 8nfim 1464 . . . . . 6 𝑦((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣)
10 nfv 1421 . . . . . 6 𝑣((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)
11 fveq2 5178 . . . . . . . 8 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
1211eqeq2d 2051 . . . . . . 7 (𝑣 = 𝑦 → ((𝐹𝑤) = (𝐹𝑣) ↔ (𝐹𝑤) = (𝐹𝑦)))
13 equequ2 1599 . . . . . . 7 (𝑣 = 𝑦 → (𝑤 = 𝑣𝑤 = 𝑦))
1412, 13imbi12d 223 . . . . . 6 (𝑣 = 𝑦 → (((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)))
159, 10, 14cbvral 2529 . . . . 5 (∀𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ∀𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦))
1615ralbii 2330 . . . 4 (∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ∀𝑤𝐴𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦))
17 nfcv 2178 . . . . . 6 𝑥𝐴
18 dff13f.1 . . . . . . . . 9 𝑥𝐹
19 nfcv 2178 . . . . . . . . 9 𝑥𝑤
2018, 19nffv 5185 . . . . . . . 8 𝑥(𝐹𝑤)
21 nfcv 2178 . . . . . . . . 9 𝑥𝑦
2218, 21nffv 5185 . . . . . . . 8 𝑥(𝐹𝑦)
2320, 22nfeq 2185 . . . . . . 7 𝑥(𝐹𝑤) = (𝐹𝑦)
24 nfv 1421 . . . . . . 7 𝑥 𝑤 = 𝑦
2523, 24nfim 1464 . . . . . 6 𝑥((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)
2617, 25nfralxy 2360 . . . . 5 𝑥𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦)
27 nfv 1421 . . . . 5 𝑤𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
28 fveq2 5178 . . . . . . . 8 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2928eqeq1d 2048 . . . . . . 7 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐹𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
30 equequ1 1598 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = 𝑦𝑥 = 𝑦))
3129, 30imbi12d 223 . . . . . 6 (𝑤 = 𝑥 → (((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3231ralbidv 2326 . . . . 5 (𝑤 = 𝑥 → (∀𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦) ↔ ∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3326, 27, 32cbvral 2529 . . . 4 (∀𝑤𝐴𝑦𝐴 ((𝐹𝑤) = (𝐹𝑦) → 𝑤 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3416, 33bitri 173 . . 3 (∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3534anbi2i 430 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑤𝐴𝑣𝐴 ((𝐹𝑤) = (𝐹𝑣) → 𝑤 = 𝑣)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
361, 35bitri 173 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wnfc 2165  wral 2306  wf 4898  1-1wf1 4899  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fv 4910
This theorem is referenced by:  f1mpt  5410  dom2lem  6252
  Copyright terms: Public domain W3C validator