ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfim GIF version

Theorem nfim 1464
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
nfim.1 𝑥𝜑
nfim.2 𝑥𝜓
Assertion
Ref Expression
nfim 𝑥(𝜑𝜓)

Proof of Theorem nfim
StepHypRef Expression
1 nfim.1 . 2 𝑥𝜑
2 nfim.2 . . 3 𝑥𝜓
32a1i 9 . 2 (𝜑 → Ⅎ𝑥𝜓)
41, 3nfim1 1463 1 𝑥(𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350
This theorem is referenced by:  nfnf  1469  nfia1  1472  sb4or  1714  cbval2  1796  nfmo1  1912  mo23  1941  euexex  1985  cbvralf  2527  vtocl2gf  2615  vtocl3gf  2616  vtoclgaf  2618  vtocl2gaf  2620  vtocl3gaf  2622  rspct  2649  rspc  2650  ralab2  2705  mob  2723  csbhypf  2885  cbvralcsf  2908  dfss2f  2936  elintab  3626  nfpo  4038  nfso  4039  nffrfor  4085  frind  4089  nfwe  4092  reusv3  4192  tfis  4306  findes  4326  dffun4f  4918  fv3  5197  tz6.12c  5203  fvmptss2  5247  fvmptssdm  5255  fvmptdf  5258  fvmptt  5262  fvmptf  5263  fmptco  5330  dff13f  5409  ovmpt2s  5624  ov2gf  5625  ovmpt2df  5632  ovi3  5637  dfoprab4f  5819  tfri3  5953  dom2lem  6252  findcard2  6346  findcard2s  6347  ac6sfi  6352  uzind4s  8531  indstr  8534  elabgft1  9891  elabgf2  9893  bj-rspgt  9899  bj-bdfindes  10048  setindis  10066  bdsetindis  10068  bj-findis  10078  bj-findes  10080
  Copyright terms: Public domain W3C validator