Proof of Theorem 2rmorex
Step | Hyp | Ref
| Expression |
1 | | df-rex 2306 |
. . . . . . . 8
⊢ (∃y ∈ B φ ↔ ∃y(y ∈ B ∧ φ)) |
2 | 1 | anbi2i 430 |
. . . . . . 7
⊢
((x ∈ A ∧ ∃y ∈ B φ) ↔
(x ∈
A ∧ ∃y(y ∈ B ∧ φ))) |
3 | 2 | mobii 1934 |
. . . . . 6
⊢ (∃*x(x ∈ A ∧ ∃y ∈ B φ) ↔ ∃*x(x ∈ A ∧ ∃y(y ∈ B ∧ φ))) |
4 | | df-rmo 2308 |
. . . . . 6
⊢ (∃*x ∈ A ∃y ∈ B φ ↔ ∃*x(x ∈ A ∧ ∃y ∈ B φ)) |
5 | | 19.42v 1783 |
. . . . . . 7
⊢ (∃y(x ∈ A ∧ (y ∈ B ∧ φ)) ↔ (x ∈ A ∧ ∃y(y ∈ B ∧ φ))) |
6 | 5 | mobii 1934 |
. . . . . 6
⊢ (∃*x∃y(x ∈ A ∧ (y ∈ B ∧ φ)) ↔ ∃*x(x ∈ A ∧ ∃y(y ∈ B ∧ φ))) |
7 | 3, 4, 6 | 3bitr4i 201 |
. . . . 5
⊢ (∃*x ∈ A ∃y ∈ B φ ↔ ∃*x∃y(x ∈ A ∧ (y ∈ B ∧ φ))) |
8 | | 2moex 1983 |
. . . . 5
⊢ (∃*x∃y(x ∈ A ∧ (y ∈ B ∧ φ)) → ∀y∃*x(x ∈ A ∧ (y ∈ B ∧ φ))) |
9 | 7, 8 | sylbi 114 |
. . . 4
⊢ (∃*x ∈ A ∃y ∈ B φ → ∀y∃*x(x ∈ A ∧ (y ∈ B ∧ φ))) |
10 | | an12 495 |
. . . . . 6
⊢
((x ∈ A ∧ (y ∈ B ∧ φ)) ↔
(y ∈
B ∧
(x ∈
A ∧ φ))) |
11 | 10 | mobii 1934 |
. . . . 5
⊢ (∃*x(x ∈ A ∧ (y ∈ B ∧ φ)) ↔ ∃*x(y ∈ B ∧ (x ∈ A ∧ φ))) |
12 | 11 | albii 1356 |
. . . 4
⊢ (∀y∃*x(x ∈ A ∧ (y ∈ B ∧ φ)) ↔ ∀y∃*x(y ∈ B ∧ (x ∈ A ∧ φ))) |
13 | 9, 12 | sylib 127 |
. . 3
⊢ (∃*x ∈ A ∃y ∈ B φ → ∀y∃*x(y ∈ B ∧ (x ∈ A ∧ φ))) |
14 | | moanimv 1972 |
. . . 4
⊢ (∃*x(y ∈ B ∧ (x ∈ A ∧ φ)) ↔ (y ∈ B → ∃*x(x ∈ A ∧ φ))) |
15 | 14 | albii 1356 |
. . 3
⊢ (∀y∃*x(y ∈ B ∧ (x ∈ A ∧ φ)) ↔ ∀y(y ∈ B → ∃*x(x ∈ A ∧ φ))) |
16 | 13, 15 | sylib 127 |
. 2
⊢ (∃*x ∈ A ∃y ∈ B φ → ∀y(y ∈ B → ∃*x(x ∈ A ∧ φ))) |
17 | | df-ral 2305 |
. . 3
⊢ (∀y ∈ B ∃*x ∈ A φ ↔ ∀y(y ∈ B → ∃*x ∈ A φ)) |
18 | | df-rmo 2308 |
. . . . 5
⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) |
19 | 18 | imbi2i 215 |
. . . 4
⊢
((y ∈ B →
∃*x
∈ A φ) ↔ (y ∈ B → ∃*x(x ∈ A ∧ φ))) |
20 | 19 | albii 1356 |
. . 3
⊢ (∀y(y ∈ B → ∃*x ∈ A φ) ↔ ∀y(y ∈ B → ∃*x(x ∈ A ∧ φ))) |
21 | 17, 20 | bitri 173 |
. 2
⊢ (∀y ∈ B ∃*x ∈ A φ ↔ ∀y(y ∈ B → ∃*x(x ∈ A ∧ φ))) |
22 | 16, 21 | sylibr 137 |
1
⊢ (∃*x ∈ A ∃y ∈ B φ → ∀y ∈ B ∃*x ∈ A φ) |