![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.27h | GIF version |
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.27h.1 | ⊢ (ψ → ∀xψ) |
Ref | Expression |
---|---|
19.27h | ⊢ (∀x(φ ∧ ψ) ↔ (∀xφ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1367 | . 2 ⊢ (∀x(φ ∧ ψ) ↔ (∀xφ ∧ ∀xψ)) | |
2 | 19.27h.1 | . . . 4 ⊢ (ψ → ∀xψ) | |
3 | 2 | 19.3h 1442 | . . 3 ⊢ (∀xψ ↔ ψ) |
4 | 3 | anbi2i 430 | . 2 ⊢ ((∀xφ ∧ ∀xψ) ↔ (∀xφ ∧ ψ)) |
5 | 1, 4 | bitri 173 | 1 ⊢ (∀x(φ ∧ ψ) ↔ (∀xφ ∧ ψ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∀wal 1240 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-4 1397 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: aaanh 1475 19.27v 1776 |
Copyright terms: Public domain | W3C validator |