Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.27h | GIF version |
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.27h.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.27h | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1370 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
2 | 19.27h.1 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | 2 | 19.3h 1445 | . . 3 ⊢ (∀𝑥𝜓 ↔ 𝜓) |
4 | 3 | anbi2i 430 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
5 | 1, 4 | bitri 173 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∀wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: aaanh 1478 19.27v 1779 |
Copyright terms: Public domain | W3C validator |