ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.27h GIF version

Theorem 19.27h 1452
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.27h.1 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
19.27h (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))

Proof of Theorem 19.27h
StepHypRef Expression
1 19.26 1370 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.27h.1 . . . 4 (𝜓 → ∀𝑥𝜓)
3219.3h 1445 . . 3 (∀𝑥𝜓𝜓)
43anbi2i 430 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑𝜓))
51, 4bitri 173 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  aaanh  1478  19.27v  1779
  Copyright terms: Public domain W3C validator