ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv3 GIF version

Theorem eqfnfv3 5254
Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eqfnfv3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐵

Proof of Theorem eqfnfv3
StepHypRef Expression
1 eqfnfv2 5253 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
2 eqss 2957 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
3 ancom 253 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ (𝐵𝐴𝐴𝐵))
42, 3bitri 173 . . . 4 (𝐴 = 𝐵 ↔ (𝐵𝐴𝐴𝐵))
54anbi1i 431 . . 3 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ ((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
6 anass 381 . . . 4 (((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ (𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
7 dfss3 2932 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
87anbi1i 431 . . . . . 6 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
9 r19.26 2438 . . . . . 6 (∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
108, 9bitr4i 176 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))
1110anbi2i 430 . . . 4 ((𝐵𝐴 ∧ (𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
126, 11bitri 173 . . 3 (((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
135, 12bitri 173 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
141, 13syl6bb 185 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wral 2303  wss 2914   Fn wfn 4884  cfv 4889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-sbc 2762  df-csb 2850  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-br 3762  df-opab 3816  df-mpt 3817  df-id 4027  df-xp 4338  df-rel 4339  df-cnv 4340  df-co 4341  df-dm 4342  df-iota 4854  df-fun 4891  df-fn 4892  df-fv 4897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator