Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemupu Structured version   GIF version

Theorem ltexprlemupu 6435
 Description: The upper cut of our constructed difference is upper. Lemma for ltexpri 6444. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{x Qy(y (2ndA) (y +Q x) (1stB))}, {x Qy(y (1stA) (y +Q x) (2ndB))}⟩
Assertion
Ref Expression
ltexprlemupu ((A<P B 𝑟 Q) → (𝑞 Q (𝑞 <Q 𝑟 𝑞 (2nd𝐶)) → 𝑟 (2nd𝐶)))
Distinct variable groups:   x,y,𝑞,𝑟,A   x,B,y,𝑞,𝑟   x,𝐶,y,𝑞,𝑟

Proof of Theorem ltexprlemupu
StepHypRef Expression
1 simplr 470 . . . . . 6 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → 𝑟 Q)
2 simprrr 480 . . . . . . 7 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y (1stA) (y +Q 𝑞) (2ndB)))
32simpld 105 . . . . . 6 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y (1stA))
4 simprl 471 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → 𝑞 <Q 𝑟)
5 simpll 469 . . . . . . . . 9 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → A<P B)
6 simprrl 479 . . . . . . . . . 10 ((𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))) → y (1stA))
76adantl 262 . . . . . . . . 9 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y (1stA))
8 ltrelpr 6353 . . . . . . . . . . . . 13 <P ⊆ (P × P)
98brel 4315 . . . . . . . . . . . 12 (A<P B → (A P B P))
109simpld 105 . . . . . . . . . . 11 (A<P BA P)
11 prop 6323 . . . . . . . . . . 11 (A P → ⟨(1stA), (2ndA)⟩ P)
1210, 11syl 14 . . . . . . . . . 10 (A<P B → ⟨(1stA), (2ndA)⟩ P)
13 elprnql 6329 . . . . . . . . . 10 ((⟨(1stA), (2ndA)⟩ P y (1stA)) → y Q)
1412, 13sylan 267 . . . . . . . . 9 ((A<P B y (1stA)) → y Q)
155, 7, 14syl2anc 393 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y Q)
16 ltanqi 6255 . . . . . . . 8 ((𝑞 <Q 𝑟 y Q) → (y +Q 𝑞) <Q (y +Q 𝑟))
174, 15, 16syl2anc 393 . . . . . . 7 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y +Q 𝑞) <Q (y +Q 𝑟))
189simprd 107 . . . . . . . . 9 (A<P BB P)
195, 18syl 14 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → B P)
202simprd 107 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y +Q 𝑞) (2ndB))
21 prop 6323 . . . . . . . . 9 (B P → ⟨(1stB), (2ndB)⟩ P)
22 prcunqu 6333 . . . . . . . . 9 ((⟨(1stB), (2ndB)⟩ P (y +Q 𝑞) (2ndB)) → ((y +Q 𝑞) <Q (y +Q 𝑟) → (y +Q 𝑟) (2ndB)))
2321, 22sylan 267 . . . . . . . 8 ((B P (y +Q 𝑞) (2ndB)) → ((y +Q 𝑞) <Q (y +Q 𝑟) → (y +Q 𝑟) (2ndB)))
2419, 20, 23syl2anc 393 . . . . . . 7 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → ((y +Q 𝑞) <Q (y +Q 𝑟) → (y +Q 𝑟) (2ndB)))
2517, 24mpd 13 . . . . . 6 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y +Q 𝑟) (2ndB))
261, 3, 25jca32 293 . . . . 5 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))))
2726eximi 1469 . . . 4 (y((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y(𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))))
28 ltexprlem.1 . . . . . . . . . 10 𝐶 = ⟨{x Qy(y (2ndA) (y +Q x) (1stB))}, {x Qy(y (1stA) (y +Q x) (2ndB))}⟩
2928ltexprlemelu 6430 . . . . . . . . 9 (𝑞 (2nd𝐶) ↔ (𝑞 Q y(y (1stA) (y +Q 𝑞) (2ndB))))
30 19.42v 1764 . . . . . . . . 9 (y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))) ↔ (𝑞 Q y(y (1stA) (y +Q 𝑞) (2ndB))))
3129, 30bitr4i 176 . . . . . . . 8 (𝑞 (2nd𝐶) ↔ y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))
3231anbi2i 433 . . . . . . 7 ((𝑞 <Q 𝑟 𝑞 (2nd𝐶)) ↔ (𝑞 <Q 𝑟 y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))))
33 19.42v 1764 . . . . . . 7 (y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))) ↔ (𝑞 <Q 𝑟 y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))))
3432, 33bitr4i 176 . . . . . 6 ((𝑞 <Q 𝑟 𝑞 (2nd𝐶)) ↔ y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))))
3534anbi2i 433 . . . . 5 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 𝑞 (2nd𝐶))) ↔ ((A<P B 𝑟 Q) y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))))
36 19.42v 1764 . . . . 5 (y((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) ↔ ((A<P B 𝑟 Q) y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))))
3735, 36bitr4i 176 . . . 4 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 𝑞 (2nd𝐶))) ↔ y((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))))
3828ltexprlemelu 6430 . . . . 5 (𝑟 (2nd𝐶) ↔ (𝑟 Q y(y (1stA) (y +Q 𝑟) (2ndB))))
39 19.42v 1764 . . . . 5 (y(𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))) ↔ (𝑟 Q y(y (1stA) (y +Q 𝑟) (2ndB))))
4038, 39bitr4i 176 . . . 4 (𝑟 (2nd𝐶) ↔ y(𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))))
4127, 37, 403imtr4i 190 . . 3 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 𝑞 (2nd𝐶))) → 𝑟 (2nd𝐶))
4241ex 108 . 2 ((A<P B 𝑟 Q) → ((𝑞 <Q 𝑟 𝑞 (2nd𝐶)) → 𝑟 (2nd𝐶)))
4342rexlimdvw 2410 1 ((A<P B 𝑟 Q) → (𝑞 Q (𝑞 <Q 𝑟 𝑞 (2nd𝐶)) → 𝑟 (2nd𝐶)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1226  ∃wex 1358   ∈ wcel 1370  ∃wrex 2281  {crab 2284  ⟨cop 3349   class class class wbr 3734  ‘cfv 4825  (class class class)co 5432  1st c1st 5684  2nd c2nd 5685  Qcnq 6134   +Q cplq 6136
 Copyright terms: Public domain W3C validator