ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemupu Structured version   GIF version

Theorem ltexprlemupu 6577
Description: The upper cut of our constructed difference is upper. Lemma for ltexpri 6586. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{x Qy(y (2ndA) (y +Q x) (1stB))}, {x Qy(y (1stA) (y +Q x) (2ndB))}⟩
Assertion
Ref Expression
ltexprlemupu ((A<P B 𝑟 Q) → (𝑞 Q (𝑞 <Q 𝑟 𝑞 (2nd𝐶)) → 𝑟 (2nd𝐶)))
Distinct variable groups:   x,y,𝑞,𝑟,A   x,B,y,𝑞,𝑟   x,𝐶,y,𝑞,𝑟

Proof of Theorem ltexprlemupu
StepHypRef Expression
1 simplr 482 . . . . . 6 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → 𝑟 Q)
2 simprrr 492 . . . . . . 7 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y (1stA) (y +Q 𝑞) (2ndB)))
32simpld 105 . . . . . 6 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y (1stA))
4 simprl 483 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → 𝑞 <Q 𝑟)
5 simpll 481 . . . . . . . . 9 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → A<P B)
6 simprrl 491 . . . . . . . . . 10 ((𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))) → y (1stA))
76adantl 262 . . . . . . . . 9 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y (1stA))
8 ltrelpr 6487 . . . . . . . . . . . . 13 <P ⊆ (P × P)
98brel 4335 . . . . . . . . . . . 12 (A<P B → (A P B P))
109simpld 105 . . . . . . . . . . 11 (A<P BA P)
11 prop 6457 . . . . . . . . . . 11 (A P → ⟨(1stA), (2ndA)⟩ P)
1210, 11syl 14 . . . . . . . . . 10 (A<P B → ⟨(1stA), (2ndA)⟩ P)
13 elprnql 6463 . . . . . . . . . 10 ((⟨(1stA), (2ndA)⟩ P y (1stA)) → y Q)
1412, 13sylan 267 . . . . . . . . 9 ((A<P B y (1stA)) → y Q)
155, 7, 14syl2anc 391 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y Q)
16 ltanqi 6386 . . . . . . . 8 ((𝑞 <Q 𝑟 y Q) → (y +Q 𝑞) <Q (y +Q 𝑟))
174, 15, 16syl2anc 391 . . . . . . 7 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y +Q 𝑞) <Q (y +Q 𝑟))
189simprd 107 . . . . . . . . 9 (A<P BB P)
195, 18syl 14 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → B P)
202simprd 107 . . . . . . . 8 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y +Q 𝑞) (2ndB))
21 prop 6457 . . . . . . . . 9 (B P → ⟨(1stB), (2ndB)⟩ P)
22 prcunqu 6467 . . . . . . . . 9 ((⟨(1stB), (2ndB)⟩ P (y +Q 𝑞) (2ndB)) → ((y +Q 𝑞) <Q (y +Q 𝑟) → (y +Q 𝑟) (2ndB)))
2321, 22sylan 267 . . . . . . . 8 ((B P (y +Q 𝑞) (2ndB)) → ((y +Q 𝑞) <Q (y +Q 𝑟) → (y +Q 𝑟) (2ndB)))
2419, 20, 23syl2anc 391 . . . . . . 7 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → ((y +Q 𝑞) <Q (y +Q 𝑟) → (y +Q 𝑟) (2ndB)))
2517, 24mpd 13 . . . . . 6 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (y +Q 𝑟) (2ndB))
261, 3, 25jca32 293 . . . . 5 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → (𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))))
2726eximi 1488 . . . 4 (y((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) → y(𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))))
28 ltexprlem.1 . . . . . . . . . 10 𝐶 = ⟨{x Qy(y (2ndA) (y +Q x) (1stB))}, {x Qy(y (1stA) (y +Q x) (2ndB))}⟩
2928ltexprlemelu 6572 . . . . . . . . 9 (𝑞 (2nd𝐶) ↔ (𝑞 Q y(y (1stA) (y +Q 𝑞) (2ndB))))
30 19.42v 1783 . . . . . . . . 9 (y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))) ↔ (𝑞 Q y(y (1stA) (y +Q 𝑞) (2ndB))))
3129, 30bitr4i 176 . . . . . . . 8 (𝑞 (2nd𝐶) ↔ y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))
3231anbi2i 430 . . . . . . 7 ((𝑞 <Q 𝑟 𝑞 (2nd𝐶)) ↔ (𝑞 <Q 𝑟 y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))))
33 19.42v 1783 . . . . . . 7 (y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))) ↔ (𝑞 <Q 𝑟 y(𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))))
3432, 33bitr4i 176 . . . . . 6 ((𝑞 <Q 𝑟 𝑞 (2nd𝐶)) ↔ y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB)))))
3534anbi2i 430 . . . . 5 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 𝑞 (2nd𝐶))) ↔ ((A<P B 𝑟 Q) y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))))
36 19.42v 1783 . . . . 5 (y((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))) ↔ ((A<P B 𝑟 Q) y(𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))))
3735, 36bitr4i 176 . . . 4 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 𝑞 (2nd𝐶))) ↔ y((A<P B 𝑟 Q) (𝑞 <Q 𝑟 (𝑞 Q (y (1stA) (y +Q 𝑞) (2ndB))))))
3828ltexprlemelu 6572 . . . . 5 (𝑟 (2nd𝐶) ↔ (𝑟 Q y(y (1stA) (y +Q 𝑟) (2ndB))))
39 19.42v 1783 . . . . 5 (y(𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))) ↔ (𝑟 Q y(y (1stA) (y +Q 𝑟) (2ndB))))
4038, 39bitr4i 176 . . . 4 (𝑟 (2nd𝐶) ↔ y(𝑟 Q (y (1stA) (y +Q 𝑟) (2ndB))))
4127, 37, 403imtr4i 190 . . 3 (((A<P B 𝑟 Q) (𝑞 <Q 𝑟 𝑞 (2nd𝐶))) → 𝑟 (2nd𝐶))
4241ex 108 . 2 ((A<P B 𝑟 Q) → ((𝑞 <Q 𝑟 𝑞 (2nd𝐶)) → 𝑟 (2nd𝐶)))
4342rexlimdvw 2430 1 ((A<P B 𝑟 Q) → (𝑞 Q (𝑞 <Q 𝑟 𝑞 (2nd𝐶)) → 𝑟 (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242  wex 1378   wcel 1390  wrex 2301  {crab 2304  cop 3370   class class class wbr 3755  cfv 4845  (class class class)co 5455  1st c1st 5707  2nd c2nd 5708  Qcnq 6264   +Q cplq 6266   <Q cltq 6269  Pcnp 6275  <P cltp 6279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-iinf 4254
This theorem depends on definitions:  df-bi 110  df-dc 742  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-int 3607  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-eprel 4017  df-id 4021  df-iord 4069  df-on 4071  df-suc 4074  df-iom 4257  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-ov 5458  df-oprab 5459  df-mpt2 5460  df-1st 5709  df-2nd 5710  df-recs 5861  df-irdg 5897  df-oadd 5944  df-omul 5945  df-er 6042  df-ec 6044  df-qs 6048  df-ni 6288  df-pli 6289  df-mi 6290  df-lti 6291  df-plpq 6328  df-enq 6331  df-nqqs 6332  df-plqqs 6333  df-ltnqqs 6337  df-inp 6448  df-iltp 6452
This theorem is referenced by:  ltexprlemrnd  6578
  Copyright terms: Public domain W3C validator