ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidif0 GIF version

Theorem unidif0 3920
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3229 . . . . . . 7 (𝑥𝑦 → ¬ 𝑦 = ∅)
21pm4.71i 371 . . . . . 6 (𝑥𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑦 = ∅))
32anbi1i 431 . . . . 5 ((𝑥𝑦𝑦𝐴) ↔ ((𝑥𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦𝐴))
4 an32 496 . . . . 5 (((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦 = ∅) ↔ ((𝑥𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦𝐴))
5 anass 381 . . . . 5 (((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦 = ∅) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
63, 4, 53bitr2ri 198 . . . 4 ((𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)) ↔ (𝑥𝑦𝑦𝐴))
76exbii 1496 . . 3 (∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)) ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 3583 . . . 4 (𝑥 (𝐴 ∖ {∅}) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})))
9 eldif 2927 . . . . . . 7 (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ {∅}))
10 velsn 3392 . . . . . . . . 9 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1110notbii 594 . . . . . . . 8 𝑦 ∈ {∅} ↔ ¬ 𝑦 = ∅)
1211anbi2i 430 . . . . . . 7 ((𝑦𝐴 ∧ ¬ 𝑦 ∈ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 = ∅))
139, 12bitri 173 . . . . . 6 (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 = ∅))
1413anbi2i 430 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
1514exbii 1496 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
168, 15bitri 173 . . 3 (𝑥 (𝐴 ∖ {∅}) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
17 eluni 3583 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
187, 16, 173bitr4i 201 . 2 (𝑥 (𝐴 ∖ {∅}) ↔ 𝑥 𝐴)
1918eqriv 2037 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 97   = wceq 1243  wex 1381  wcel 1393  cdif 2914  c0 3224  {csn 3375   cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-nul 3225  df-sn 3381  df-uni 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator