ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemloc GIF version

Theorem ltexprlemloc 6705
Description: Our constructed difference is located. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemloc (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemloc
Dummy variables 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6507 . . . . . 6 (𝑞 <Q 𝑟 → ∃𝑤Q (𝑞 +Q 𝑤) = 𝑟)
21adantl 262 . . . . 5 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ∃𝑤Q (𝑞 +Q 𝑤) = 𝑟)
3 ltrelpr 6603 . . . . . . . . . 10 <P ⊆ (P × P)
43brel 4392 . . . . . . . . 9 (𝐴<P 𝐵 → (𝐴P𝐵P))
54simpld 105 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
6 prop 6573 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prarloc 6601 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
86, 7sylan 267 . . . . . . . 8 ((𝐴P𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
95, 8sylan 267 . . . . . . 7 ((𝐴<P 𝐵𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
109ad2ant2r 478 . . . . . 6 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
114simprd 107 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
1211ad2antrr 457 . . . . . . . . . . . . 13 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → 𝐵P)
1312ad2antrr 457 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → 𝐵P)
14 ltanqg 6498 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
1514adantl 262 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
16 elprnqu 6580 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
176, 16sylan 267 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
185, 17sylan 267 . . . . . . . . . . . . . . . . 17 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
1918adantlr 446 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2019ad2ant2rl 480 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑦Q)
21 elprnql 6579 . . . . . . . . . . . . . . . . . . . 20 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
226, 21sylan 267 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
235, 22sylan 267 . . . . . . . . . . . . . . . . . 18 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
2423adantlr 446 . . . . . . . . . . . . . . . . 17 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧Q)
2524ad2ant2r 478 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑧Q)
26 simplrl 487 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑤Q)
27 addclnq 6473 . . . . . . . . . . . . . . . 16 ((𝑧Q𝑤Q) → (𝑧 +Q 𝑤) ∈ Q)
2825, 26, 27syl2anc 391 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q 𝑤) ∈ Q)
29 ltrelnq 6463 . . . . . . . . . . . . . . . . . . 19 <Q ⊆ (Q × Q)
3029brel 4392 . . . . . . . . . . . . . . . . . 18 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
3130simpld 105 . . . . . . . . . . . . . . . . 17 (𝑞 <Q 𝑟𝑞Q)
3231adantl 262 . . . . . . . . . . . . . . . 16 ((𝐴<P 𝐵𝑞 <Q 𝑟) → 𝑞Q)
3332ad2antrr 457 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑞Q)
34 addcomnqg 6479 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3534adantl 262 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3615, 20, 28, 33, 35caovord2d 5670 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) ↔ (𝑦 +Q 𝑞) <Q ((𝑧 +Q 𝑤) +Q 𝑞)))
37 addassnqg 6480 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑤Q𝑞Q) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q (𝑤 +Q 𝑞)))
3825, 26, 33, 37syl3anc 1135 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q (𝑤 +Q 𝑞)))
39 addcomnqg 6479 . . . . . . . . . . . . . . . . . 18 ((𝑤Q𝑞Q) → (𝑤 +Q 𝑞) = (𝑞 +Q 𝑤))
4026, 33, 39syl2anc 391 . . . . . . . . . . . . . . . . 17 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑤 +Q 𝑞) = (𝑞 +Q 𝑤))
4140oveq2d 5528 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q (𝑤 +Q 𝑞)) = (𝑧 +Q (𝑞 +Q 𝑤)))
42 simplrr 488 . . . . . . . . . . . . . . . . 17 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑞 +Q 𝑤) = 𝑟)
4342oveq2d 5528 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q (𝑞 +Q 𝑤)) = (𝑧 +Q 𝑟))
4438, 41, 433eqtrd 2076 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q 𝑟))
4544breq2d 3776 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑦 +Q 𝑞) <Q ((𝑧 +Q 𝑤) +Q 𝑞) ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)))
4636, 45bitrd 177 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)))
4746biimpa 280 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟))
48 prop 6573 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
49 prloc 6589 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5048, 49sylan 267 . . . . . . . . . . . 12 ((𝐵P ∧ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5113, 47, 50syl2anc 391 . . . . . . . . . . 11 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5251ex 108 . . . . . . . . . 10 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5352anassrs 380 . . . . . . . . 9 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ 𝑧 ∈ (1st𝐴)) ∧ 𝑦 ∈ (2nd𝐴)) → (𝑦 <Q (𝑧 +Q 𝑤) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5453reximdva 2421 . . . . . . . 8 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ 𝑧 ∈ (1st𝐴)) → (∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → ∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5554reximdva 2421 . . . . . . 7 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
56 prml 6575 . . . . . . . . . . . 12 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑧Q 𝑧 ∈ (1st𝐴))
57 rexex 2368 . . . . . . . . . . . 12 (∃𝑧Q 𝑧 ∈ (1st𝐴) → ∃𝑧 𝑧 ∈ (1st𝐴))
586, 56, 573syl 17 . . . . . . . . . . 11 (𝐴P → ∃𝑧 𝑧 ∈ (1st𝐴))
59 r19.45mv 3315 . . . . . . . . . . 11 (∃𝑧 𝑧 ∈ (1st𝐴) → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
605, 58, 593syl 17 . . . . . . . . . 10 (𝐴<P 𝐵 → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
6160adantr 261 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
62 prmu 6576 . . . . . . . . . . . . 13 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd𝐴))
63 rexex 2368 . . . . . . . . . . . . 13 (∃𝑥Q 𝑥 ∈ (2nd𝐴) → ∃𝑥 𝑥 ∈ (2nd𝐴))
646, 62, 633syl 17 . . . . . . . . . . . 12 (𝐴P → ∃𝑥 𝑥 ∈ (2nd𝐴))
65 r19.9rmv 3313 . . . . . . . . . . . . . 14 (∃𝑥 𝑥 ∈ (2nd𝐴) → ((𝑧 +Q 𝑟) ∈ (2nd𝐵) ↔ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)))
6665orbi2d 704 . . . . . . . . . . . . 13 (∃𝑥 𝑥 ∈ (2nd𝐴) → ((∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
67 r19.43 2468 . . . . . . . . . . . . 13 (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)))
6866, 67syl6rbbr 188 . . . . . . . . . . . 12 (∃𝑥 𝑥 ∈ (2nd𝐴) → (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
695, 64, 683syl 17 . . . . . . . . . . 11 (𝐴<P 𝐵 → (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7069rexbidv 2327 . . . . . . . . . 10 (𝐴<P 𝐵 → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7170adantr 261 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
72 ibar 285 . . . . . . . . . . . . . . 15 (𝑞Q → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
7372adantr 261 . . . . . . . . . . . . . 14 ((𝑞Q𝑟Q) → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
74 ibar 285 . . . . . . . . . . . . . . 15 (𝑟Q → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
7574adantl 262 . . . . . . . . . . . . . 14 ((𝑞Q𝑟Q) → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
7673, 75orbi12d 707 . . . . . . . . . . . . 13 ((𝑞Q𝑟Q) → ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))))
7730, 76syl 14 . . . . . . . . . . . 12 (𝑞 <Q 𝑟 → ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))))
78 ltexprlem.1 . . . . . . . . . . . . . 14 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
7978ltexprlemell 6696 . . . . . . . . . . . . 13 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
8078ltexprlemelu 6697 . . . . . . . . . . . . . 14 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
81 eleq1 2100 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
82 oveq1 5519 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑦 +Q 𝑟) = (𝑧 +Q 𝑟))
8382eleq1d 2106 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑦 +Q 𝑟) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
8481, 83anbi12d 442 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
8584cbvexv 1795 . . . . . . . . . . . . . . 15 (∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
8685anbi2i 430 . . . . . . . . . . . . . 14 ((𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
8780, 86bitri 173 . . . . . . . . . . . . 13 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
8879, 87orbi12i 681 . . . . . . . . . . . 12 ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
8977, 88syl6rbbr 188 . . . . . . . . . . 11 (𝑞 <Q 𝑟 → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
90 df-rex 2312 . . . . . . . . . . . 12 (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
91 df-rex 2312 . . . . . . . . . . . 12 (∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
9290, 91orbi12i 681 . . . . . . . . . . 11 ((∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9389, 92syl6bbr 187 . . . . . . . . . 10 (𝑞 <Q 𝑟 → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9493adantl 262 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9561, 71, 943bitr4rd 210 . . . . . . . 8 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9695adantr 261 . . . . . . 7 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9755, 96sylibrd 158 . . . . . 6 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
9810, 97mpd 13 . . . . 5 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)))
992, 98rexlimddv 2437 . . . 4 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)))
10099ex 108 . . 3 (𝐴<P 𝐵 → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
101100ralrimivw 2393 . 2 (𝐴<P 𝐵 → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
102101ralrimivw 2393 1 (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wex 1381  wcel 1393  wral 2306  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378   +Q cplq 6380   <Q cltq 6383  Pcnp 6389  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iltp 6568
This theorem is referenced by:  ltexprlempr  6706
  Copyright terms: Public domain W3C validator