ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt3 GIF version

Theorem dfmpt3 5021
Description: Alternate definition for the "maps to" notation df-mpt 3820. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})

Proof of Theorem dfmpt3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 3820 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 velsn 3392 . . . . . . 7 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32anbi2i 430 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
43anbi2i 430 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
542exbii 1497 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
6 eliunxp 4475 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})))
7 elopab 3995 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
85, 6, 73bitr4i 201 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
98eqriv 2037 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
101, 9eqtr4i 2063 1 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wex 1381  wcel 1393  {csn 3375  cop 3378   ciun 3657  {copab 3817  cmpt 3818   × cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-opab 3819  df-mpt 3820  df-xp 4351  df-rel 4352
This theorem is referenced by:  dfmpt  5340  dfmptg  5342
  Copyright terms: Public domain W3C validator