ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nonconne GIF version

Theorem nonconne 2217
Description: Law of noncontradiction with equality and inequality. (Contributed by NM, 3-Feb-2012.)
Assertion
Ref Expression
nonconne ¬ (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem nonconne
StepHypRef Expression
1 pm3.24 627 . 2 ¬ (𝐴 = 𝐵 ∧ ¬ 𝐴 = 𝐵)
2 df-ne 2206 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32anbi2i 430 . 2 ((𝐴 = 𝐵𝐴𝐵) ↔ (𝐴 = 𝐵 ∧ ¬ 𝐴 = 𝐵))
41, 3mtbir 596 1 ¬ (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 97   = wceq 1243  wne 2204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110  df-ne 2206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator