![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpt2xopovel | GIF version |
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpt2xopoveq.f | ⊢ 𝐹 = (x ∈ V, y ∈ (1st ‘x) ↦ {𝑛 ∈ (1st ‘x) ∣ φ}) |
Ref | Expression |
---|---|
mpt2xopovel | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2xopoveq.f | . . . 4 ⊢ 𝐹 = (x ∈ V, y ∈ (1st ‘x) ↦ {𝑛 ∈ (1st ‘x) ∣ φ}) | |
2 | 1 | mpt2xopn0yelv 5795 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
3 | 2 | pm4.71rd 374 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)))) |
4 | 1 | mpt2xopoveq 5796 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / x][𝐾 / y]φ}) |
5 | 4 | eleq2d 2104 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / x][𝐾 / y]φ})) |
6 | nfcv 2175 | . . . . . . 7 ⊢ Ⅎ𝑛𝑉 | |
7 | 6 | elrabsf 2795 | . . . . . 6 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / x][𝐾 / y]φ} ↔ (𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / x][𝐾 / y]φ)) |
8 | sbccom 2827 | . . . . . . . 8 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / x][𝐾 / y]φ ↔ [〈𝑉, 𝑊〉 / x][𝑁 / 𝑛][𝐾 / y]φ) | |
9 | sbccom 2827 | . . . . . . . . 9 ⊢ ([𝑁 / 𝑛][𝐾 / y]φ ↔ [𝐾 / y][𝑁 / 𝑛]φ) | |
10 | 9 | sbcbii 2812 | . . . . . . . 8 ⊢ ([〈𝑉, 𝑊〉 / x][𝑁 / 𝑛][𝐾 / y]φ ↔ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ) |
11 | 8, 10 | bitri 173 | . . . . . . 7 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / x][𝐾 / y]φ ↔ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ) |
12 | 11 | anbi2i 430 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / x][𝐾 / y]φ) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ)) |
13 | 7, 12 | bitri 173 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / x][𝐾 / y]φ} ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ)) |
14 | 5, 13 | syl6bb 185 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ))) |
15 | 14 | pm5.32da 425 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ)))) |
16 | 3anass 888 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ))) | |
17 | 15, 16 | syl6bbr 187 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ))) |
18 | 3, 17 | bitrd 177 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / x][𝐾 / y][𝑁 / 𝑛]φ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∧ w3a 884 = wceq 1242 ∈ wcel 1390 {crab 2304 Vcvv 2551 [wsbc 2758 〈cop 3370 ‘cfv 4845 (class class class)co 5455 ↦ cmpt2 5457 1st c1st 5707 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-setind 4220 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-rab 2309 df-v 2553 df-sbc 2759 df-csb 2847 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-iun 3650 df-br 3756 df-opab 3810 df-mpt 3811 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-iota 4810 df-fun 4847 df-fv 4853 df-ov 5458 df-oprab 5459 df-mpt2 5460 df-1st 5709 df-2nd 5710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |