ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun4f Structured version   GIF version

Theorem dffun4f 4861
Description: Definition of function like dffun4 4856 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
Hypotheses
Ref Expression
dffun4f.1 xA
dffun4f.2 yA
dffun4f.3 zA
Assertion
Ref Expression
dffun4f (Fun A ↔ (Rel A xyz((⟨x, y A x, z A) → y = z)))
Distinct variable group:   x,y,z
Allowed substitution hints:   A(x,y,z)

Proof of Theorem dffun4f
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 dffun4f.1 . . 3 xA
2 dffun4f.2 . . 3 yA
31, 2dffun6f 4858 . 2 (Fun A ↔ (Rel A x∃*y xAy))
4 nfcv 2175 . . . . . . 7 yx
5 nfcv 2175 . . . . . . 7 yw
64, 2, 5nfbr 3799 . . . . . 6 y xAw
7 breq2 3759 . . . . . 6 (y = w → (xAyxAw))
86, 7mo4f 1957 . . . . 5 (∃*y xAyyw((xAy xAw) → y = w))
9 nfv 1418 . . . . . . 7 w((xAy xAz) → y = z)
10 nfcv 2175 . . . . . . . . . 10 zx
11 dffun4f.3 . . . . . . . . . 10 zA
12 nfcv 2175 . . . . . . . . . 10 zy
1310, 11, 12nfbr 3799 . . . . . . . . 9 z xAy
14 nfcv 2175 . . . . . . . . . 10 zw
1510, 11, 14nfbr 3799 . . . . . . . . 9 z xAw
1613, 15nfan 1454 . . . . . . . 8 z(xAy xAw)
17 nfv 1418 . . . . . . . 8 z y = w
1816, 17nfim 1461 . . . . . . 7 z((xAy xAw) → y = w)
19 breq2 3759 . . . . . . . . 9 (z = w → (xAzxAw))
2019anbi2d 437 . . . . . . . 8 (z = w → ((xAy xAz) ↔ (xAy xAw)))
21 equequ2 1596 . . . . . . . 8 (z = w → (y = zy = w))
2220, 21imbi12d 223 . . . . . . 7 (z = w → (((xAy xAz) → y = z) ↔ ((xAy xAw) → y = w)))
239, 18, 22cbval 1634 . . . . . 6 (z((xAy xAz) → y = z) ↔ w((xAy xAw) → y = w))
2423albii 1356 . . . . 5 (yz((xAy xAz) → y = z) ↔ yw((xAy xAw) → y = w))
258, 24bitr4i 176 . . . 4 (∃*y xAyyz((xAy xAz) → y = z))
2625albii 1356 . . 3 (x∃*y xAyxyz((xAy xAz) → y = z))
2726anbi2i 430 . 2 ((Rel A x∃*y xAy) ↔ (Rel A xyz((xAy xAz) → y = z)))
28 df-br 3756 . . . . . . 7 (xAy ↔ ⟨x, y A)
29 df-br 3756 . . . . . . 7 (xAz ↔ ⟨x, z A)
3028, 29anbi12i 433 . . . . . 6 ((xAy xAz) ↔ (⟨x, y A x, z A))
3130imbi1i 227 . . . . 5 (((xAy xAz) → y = z) ↔ ((⟨x, y A x, z A) → y = z))
32312albii 1357 . . . 4 (yz((xAy xAz) → y = z) ↔ yz((⟨x, y A x, z A) → y = z))
3332albii 1356 . . 3 (xyz((xAy xAz) → y = z) ↔ xyz((⟨x, y A x, z A) → y = z))
3433anbi2i 430 . 2 ((Rel A xyz((xAy xAz) → y = z)) ↔ (Rel A xyz((⟨x, y A x, z A) → y = z)))
353, 27, 343bitri 195 1 (Fun A ↔ (Rel A xyz((⟨x, y A x, z A) → y = z)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98  wal 1240   wcel 1390  ∃*wmo 1898  wnfc 2162  cop 3370   class class class wbr 3755  Rel wrel 4293  Fun wfun 4839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-id 4021  df-cnv 4296  df-co 4297  df-fun 4847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator