ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v Structured version   GIF version

Theorem 19.23v 1760
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (x(φψ) ↔ (xφψ))
Distinct variable group:   ψ,x
Allowed substitution hint:   φ(x)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1416 . 2 (ψxψ)
2119.23h 1384 1 (x(φψ) ↔ (xφψ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wal 1240  wex 1378
This theorem was proved from axioms:  ax-mp 7  ax-gen 1335  ax-ie2 1380  ax-17 1416
This theorem is referenced by:  19.23vv  1761  2eu4  1990  gencbval  2596  euind  2722  reuind  2738  unissb  3601  dftr2  3847  ssrelrel  4383  cotr  4649  dffun2  4855  fununi  4910  dff13  5350  acexmidlem2  5452
  Copyright terms: Public domain W3C validator