Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2i Structured version   GIF version

Theorem sseq2i 2964
 Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1 A = B
Assertion
Ref Expression
sseq2i (𝐶A𝐶B)

Proof of Theorem sseq2i
StepHypRef Expression
1 sseq1i.1 . 2 A = B
2 sseq2 2961 . 2 (A = B → (𝐶A𝐶B))
31, 2ax-mp 7 1 (𝐶A𝐶B)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   = wceq 1242   ⊆ wss 2911 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925 This theorem is referenced by:  sseqtri  2971  syl6sseq  2985  abss  3003  ssrab  3012  ssintrab  3629  iunpwss  3734  iotass  4827  dffun2  4855  ssimaex  5177  bj-ssom  9370
 Copyright terms: Public domain W3C validator