ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xporderlem GIF version

Theorem xporderlem 5852
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
Hypothesis
Ref Expression
xporderlem.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
Assertion
Ref Expression
xporderlem (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑎,𝑦   𝑥,𝑏,𝑦   𝑥,𝑐,𝑦   𝑥,𝑑,𝑦
Allowed substitution hints:   𝐴(𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑆(𝑎,𝑏,𝑐,𝑑)   𝑇(𝑥,𝑦,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem xporderlem
StepHypRef Expression
1 df-br 3765 . . 3 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ 𝑇)
2 xporderlem.1 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
32eleq2i 2104 . . 3 (⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ 𝑇 ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))})
41, 3bitri 173 . 2 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))})
5 vex 2560 . . . 4 𝑎 ∈ V
6 vex 2560 . . . 4 𝑏 ∈ V
75, 6opex 3966 . . 3 𝑎, 𝑏⟩ ∈ V
8 vex 2560 . . . 4 𝑐 ∈ V
9 vex 2560 . . . 4 𝑑 ∈ V
108, 9opex 3966 . . 3 𝑐, 𝑑⟩ ∈ V
11 eleq1 2100 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥 ∈ (𝐴 × 𝐵) ↔ ⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐵)))
12 opelxp 4374 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐵) ↔ (𝑎𝐴𝑏𝐵))
1311, 12syl6bb 185 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑎𝐴𝑏𝐵)))
1413anbi1d 438 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵))))
155, 6op1std 5775 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
1615breq1d 3774 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → ((1st𝑥)𝑅(1st𝑦) ↔ 𝑎𝑅(1st𝑦)))
1715eqeq1d 2048 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → ((1st𝑥) = (1st𝑦) ↔ 𝑎 = (1st𝑦)))
185, 6op2ndd 5776 . . . . . . 7 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
1918breq1d 3774 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → ((2nd𝑥)𝑆(2nd𝑦) ↔ 𝑏𝑆(2nd𝑦)))
2017, 19anbi12d 442 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦)) ↔ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))))
2116, 20orbi12d 707 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → (((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))) ↔ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)))))
2214, 21anbi12d 442 . . 3 (𝑥 = ⟨𝑎, 𝑏⟩ → (((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦)))) ↔ (((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))))))
23 eleq1 2100 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑦 ∈ (𝐴 × 𝐵) ↔ ⟨𝑐, 𝑑⟩ ∈ (𝐴 × 𝐵)))
24 opelxp 4374 . . . . . 6 (⟨𝑐, 𝑑⟩ ∈ (𝐴 × 𝐵) ↔ (𝑐𝐴𝑑𝐵))
2523, 24syl6bb 185 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑦 ∈ (𝐴 × 𝐵) ↔ (𝑐𝐴𝑑𝐵)))
2625anbi2d 437 . . . 4 (𝑦 = ⟨𝑐, 𝑑⟩ → (((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵))))
278, 9op1std 5775 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (1st𝑦) = 𝑐)
2827breq2d 3776 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑎𝑅(1st𝑦) ↔ 𝑎𝑅𝑐))
2927eqeq2d 2051 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑎 = (1st𝑦) ↔ 𝑎 = 𝑐))
308, 9op2ndd 5776 . . . . . . 7 (𝑦 = ⟨𝑐, 𝑑⟩ → (2nd𝑦) = 𝑑)
3130breq2d 3776 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑏𝑆(2nd𝑦) ↔ 𝑏𝑆𝑑))
3229, 31anbi12d 442 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → ((𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)) ↔ (𝑎 = 𝑐𝑏𝑆𝑑)))
3328, 32orbi12d 707 . . . 4 (𝑦 = ⟨𝑐, 𝑑⟩ → ((𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))) ↔ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
3426, 33anbi12d 442 . . 3 (𝑦 = ⟨𝑐, 𝑑⟩ → ((((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)))) ↔ (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑)))))
357, 10, 22, 34opelopab 4008 . 2 (⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))} ↔ (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
36 an4 520 . . 3 (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ↔ ((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)))
3736anbi1i 431 . 2 ((((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))) ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
384, 35, 373bitri 195 1 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98  wo 629   = wceq 1243  wcel 1393  cop 3378   class class class wbr 3764  {copab 3817   × cxp 4343  cfv 4902  1st c1st 5765  2nd c2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by:  poxp  5853
  Copyright terms: Public domain W3C validator