ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ref GIF version

Theorem enq0ref 6531
Description: The equivalence relation for non-negative fractions is reflexive. Lemma for enq0er 6533. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0ref (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)

Proof of Theorem enq0ref
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4361 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)))
2 elxpi 4361 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N)))
3 ee4anv 1809 . . . . . 6 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) ↔ (∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
41, 2, 3sylanbrc 394 . . . . 5 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
5 eqtr2 2058 . . . . . . . . . . . 12 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩)
6 vex 2560 . . . . . . . . . . . . 13 𝑧 ∈ V
7 vex 2560 . . . . . . . . . . . . 13 𝑤 ∈ V
86, 7opth 3974 . . . . . . . . . . . 12 (⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩ ↔ (𝑧 = 𝑣𝑤 = 𝑢))
95, 8sylib 127 . . . . . . . . . . 11 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 = 𝑣𝑤 = 𝑢))
10 oveq1 5519 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑢))
11 oveq2 5520 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → (𝑣 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
1211equcoms 1594 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑣 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
1310, 12sylan9eq 2092 . . . . . . . . . . 11 ((𝑧 = 𝑣𝑤 = 𝑢) → (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
149, 13syl 14 . . . . . . . . . 10 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
1514ancli 306 . . . . . . . . 9 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤)))
1615ad2ant2r 478 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤)))
17 pinn 6407 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
18 nnmcom 6068 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ∈ ω) → (𝑣 ·𝑜 𝑤) = (𝑤 ·𝑜 𝑣))
1917, 18sylan2 270 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤N) → (𝑣 ·𝑜 𝑤) = (𝑤 ·𝑜 𝑣))
2019eqeq2d 2051 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤N) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2120ancoms 255 . . . . . . . . . . 11 ((𝑤N𝑣 ∈ ω) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2221ad2ant2lr 479 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2322ad2ant2l 477 . . . . . . . . 9 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2423anbi2d 437 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
2516, 24mpbid 135 . . . . . . 7 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
26252eximi 1492 . . . . . 6 (∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
27262eximi 1492 . . . . 5 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
284, 27syl 14 . . . 4 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2928ancli 306 . . 3 (𝑓 ∈ (ω × N) → (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
30 vex 2560 . . . . 5 𝑓 ∈ V
31 eleq1 2100 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3231anbi1d 438 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
33 eqeq1 2046 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ 𝑓 = ⟨𝑧, 𝑤⟩))
3433anbi1d 438 . . . . . . . 8 (𝑥 = 𝑓 → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
3534anbi1d 438 . . . . . . 7 (𝑥 = 𝑓 → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
36354exbidv 1750 . . . . . 6 (𝑥 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
3732, 36anbi12d 442 . . . . 5 (𝑥 = 𝑓 → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
38 eleq1 2100 . . . . . . 7 (𝑦 = 𝑓 → (𝑦 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3938anbi2d 437 . . . . . 6 (𝑦 = 𝑓 → ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N))))
40 eqeq1 2046 . . . . . . . . 9 (𝑦 = 𝑓 → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ 𝑓 = ⟨𝑣, 𝑢⟩))
4140anbi2d 437 . . . . . . . 8 (𝑦 = 𝑓 → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩)))
4241anbi1d 438 . . . . . . 7 (𝑦 = 𝑓 → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
43424exbidv 1750 . . . . . 6 (𝑦 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
4439, 43anbi12d 442 . . . . 5 (𝑦 = 𝑓 → (((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
45 df-enq0 6522 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))}
4630, 30, 37, 44, 45brab 4009 . . . 4 (𝑓 ~Q0 𝑓 ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
47 anidm 376 . . . . 5 ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ↔ 𝑓 ∈ (ω × N))
4847anbi1i 431 . . . 4 (((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
4946, 48bitri 173 . . 3 (𝑓 ~Q0 𝑓 ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
5029, 49sylibr 137 . 2 (𝑓 ∈ (ω × N) → 𝑓 ~Q0 𝑓)
5149simplbi 259 . 2 (𝑓 ~Q0 𝑓𝑓 ∈ (ω × N))
5250, 51impbii 117 1 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  cop 3378   class class class wbr 3764  ωcom 4313   × cxp 4343  (class class class)co 5512   ·𝑜 comu 5999  Ncnpi 6370   ~Q0 ceq0 6384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-ni 6402  df-enq0 6522
This theorem is referenced by:  enq0er  6533
  Copyright terms: Public domain W3C validator