ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvreu Structured version   GIF version

Theorem cbvreu 2525
Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
cbvral.1 yφ
cbvral.2 xψ
cbvral.3 (x = y → (φψ))
Assertion
Ref Expression
cbvreu (∃!x A φ∃!y A ψ)
Distinct variable groups:   x,A   y,A
Allowed substitution hints:   φ(x,y)   ψ(x,y)

Proof of Theorem cbvreu
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 nfv 1418 . . . 4 z(x A φ)
21sb8eu 1910 . . 3 (∃!x(x A φ) ↔ ∃!z[z / x](x A φ))
3 sban 1826 . . . 4 ([z / x](x A φ) ↔ ([z / x]x A [z / x]φ))
43eubii 1906 . . 3 (∃!z[z / x](x A φ) ↔ ∃!z([z / x]x A [z / x]φ))
5 clelsb3 2139 . . . . . 6 ([z / x]x Az A)
65anbi1i 431 . . . . 5 (([z / x]x A [z / x]φ) ↔ (z A [z / x]φ))
76eubii 1906 . . . 4 (∃!z([z / x]x A [z / x]φ) ↔ ∃!z(z A [z / x]φ))
8 nfv 1418 . . . . . 6 y z A
9 cbvral.1 . . . . . . 7 yφ
109nfsb 1819 . . . . . 6 y[z / x]φ
118, 10nfan 1454 . . . . 5 y(z A [z / x]φ)
12 nfv 1418 . . . . 5 z(y A ψ)
13 eleq1 2097 . . . . . 6 (z = y → (z Ay A))
14 sbequ 1718 . . . . . . 7 (z = y → ([z / x]φ ↔ [y / x]φ))
15 cbvral.2 . . . . . . . 8 xψ
16 cbvral.3 . . . . . . . 8 (x = y → (φψ))
1715, 16sbie 1671 . . . . . . 7 ([y / x]φψ)
1814, 17syl6bb 185 . . . . . 6 (z = y → ([z / x]φψ))
1913, 18anbi12d 442 . . . . 5 (z = y → ((z A [z / x]φ) ↔ (y A ψ)))
2011, 12, 19cbveu 1921 . . . 4 (∃!z(z A [z / x]φ) ↔ ∃!y(y A ψ))
217, 20bitri 173 . . 3 (∃!z([z / x]x A [z / x]φ) ↔ ∃!y(y A ψ))
222, 4, 213bitri 195 . 2 (∃!x(x A φ) ↔ ∃!y(y A ψ))
23 df-reu 2307 . 2 (∃!x A φ∃!x(x A φ))
24 df-reu 2307 . 2 (∃!y A ψ∃!y(y A ψ))
2522, 23, 243bitr4i 201 1 (∃!x A φ∃!y A ψ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98  wnf 1346   wcel 1390  [wsb 1642  ∃!weu 1897  ∃!wreu 2302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-cleq 2030  df-clel 2033  df-reu 2307
This theorem is referenced by:  cbvrmo  2526  cbvreuv  2529
  Copyright terms: Public domain W3C validator