![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resco | GIF version |
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4639 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
2 | relco 4819 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
3 | vex 2560 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 2560 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brco 4506 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | anbi1i 431 | . . . 4 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) |
7 | 19.41v 1782 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) | |
8 | an32 496 | . . . . . 6 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) | |
9 | vex 2560 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
10 | 9 | brres 4618 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶)) |
11 | 10 | anbi1i 431 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) |
12 | 8, 11 | bitr4i 176 | . . . . 5 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
13 | 12 | exbii 1496 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
14 | 6, 7, 13 | 3bitr2i 197 | . . 3 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
15 | 4 | brres 4618 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶)) |
16 | 3, 4 | brco 4506 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
17 | 14, 15, 16 | 3bitr4i 201 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
18 | 1, 2, 17 | eqbrriv 4435 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 = wceq 1243 ∃wex 1381 ∈ wcel 1393 class class class wbr 3764 ↾ cres 4347 ∘ ccom 4349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-co 4354 df-res 4357 |
This theorem is referenced by: cocnvcnv2 4832 coires1 4838 relcoi1 4849 dftpos2 5876 |
Copyright terms: Public domain | W3C validator |